Toughening of epoxy with different types of modifiers produces a bimodal blend that might show better fracture resistance in comparison with single-modified ones. In this research, bimodal epoxy formulations including mixtures of glass microsphere and silica nanoparticles are explored for possible synergistic toughening. The influence of composition on the glass transition temperature (T g ), tensile characteristics, and fracture toughness (K IC ) is investigated. Interestingly, a synergism in fracture toughness is observed when mixtures of modifiers were incorporated. For the fixed overall modifier content, K IC is higher when the volume fraction of glass microsphere is lesser than the volume fraction of nanosilica. Fractographs reveal that glass microsphere increases the toughness of epoxy matrix by crack pinning/bridging mechanisms. On the other hand, nanosilica enhances the toughness by increase in plastic deformation via shear banding/particle debonding. Interestingly, the origin of synergistic toughness in bimodal epoxies is the interaction between the glass microsphere and crack-tip damage zone which provides comprehensive stable crack deflection within the nanosilica-toughened epoxy. This mechanism results in a mixed-mode crack growth that reduces the strain energy release rate in bimodal formulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.