Stiffener rings and stringers are used commonly in offshore and aerospace structures. Welding the stiffener to the structure causes the appearance of residual stress and distortion that leads to short-term and long-term negative effects. Residual stress and distortion of welding have destructive effects such as deformation, brittle fracture, and fatigue of the welded structures. This paper aims to investigate the effects of preheating, time interval and welding parameters such as welding current and speed on residual stress and distortion of joining an ST52-3N (DIN 1.0570) T-shape stiffener ring to an AISI 4130 (DIN 1.7218) thin-walled tubular shell by eleven pairs of welding line in both sides of the ring by means of finite element method (FEM). Results in tangent (longitudinal), axial and radial directions have been compared and the best welding methods proposed. After the comparison of the results, simultaneous welding both sides of the ring with preheating presented as the best method with less distortion and residual stresses among the studied conditions. The correctness of the FEM confirmed by the validation of the results.
Welding is a process of permanent joining parts by different welding methods. Residual stress and distortion are the most common phenomena of this process. Reduction of the residual stresses, distortion and improving the quality of welding are the important subjects of this field. Determining and analyzing the residual stresses and distortion is the main step for these purposes. Welding sequences, speed and current are the most effective parameters of this process. In this study, effects of welding parameters such as welding speed and current, in order to reduce residual stress and distortion of welding ST52 rolled plate in different welding sequences have been studied with three-dimensional thermo-mechanical finite element model by means of ANSYS APDL. By comparing different considered situations, the most efficient welding methods with the least residual stress and distortion by considering different welding sequences have been suggested. It obtains that welding the ST52 rolled plate from edge to edge with higher current and lower speed is the best option in fatigue and load-bearing situations, and welding from the center to both sides simultaneously with lower current and higher speed is the best option for assembly problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.