This study suggests that steatotic livers can be successfully preserved using normothermic preservation for prolonged periods and that normothermic preservation facilitates a reduction in hepatic steatosis. Further studies are now needed including transplantation of steatotic livers after normothermic preservation.
Iron is critical for life but toxic in excess because of iron-catalysed formation of pro-oxidants that cause tissue damage in a range of disorders. The Nrf2 transcription factor orchestrates cell-intrinsic protective antioxidant responses, and the peptide hormone hepcidin maintains systemic iron homeostasis, but is pathophysiologically decreased in haemochromatosis and beta-thalassaemia. Here, we show that Nrf2 is activated by iron-induced, mitochondria-derived pro-oxidants and drives Bmp6 expression in liver sinusoid endothelial cells, which in turn increases hepcidin synthesis by neighbouring hepatocytes. In Nrf2 knockout mice, the Bmp6-hepcidin response to oral and parenteral iron is impaired and iron accumulation and hepatic damage are increased. Pharmacological activation of Nrf2 stimulates the Bmp6-hepcidin axis, improving iron homeostasis in haemochromatosis and counteracting the inhibition of Bmp6 by erythroferrone in beta-thalassaemia. We propose that Nrf2 links cellular sensing of excess toxic iron to control of systemic iron homeostasis and antioxidant responses, and may be a therapeutic target for iron-associated disorders.
Organ preservation by warm perfusion, maintaining physiological pressure and flow parameters, has enabled prolonged preservation and successful transplantation of both normal livers and those with substantial ischemic damage. This technique has the potential to address the shortage of organs for transplantation.
Donor organ shortage necessitates use of less than optimal donor allografts for transplantation. The current cold storage preservation technique fails to preserve marginal donor grafts sufficiently. Evidence from large animal experiments suggests superiority of normothermic machine preservation (NMP) of liver allografts. In this study, we analyze discarded human liver grafts that underwent NMP for the extended period of 24 hours. Thirteen human liver grafts which had been discarded for transplantation were entered into this study. Perfusion was performed with an automated device using an oxygenated, sanguineous perfusion solution at normothermia. Automated control was incorporated for temperature-, flow-, and pressure-regulation as well as oxygenation. All livers were perfused for 24 hours; parameters of biochemical and synthetic liver function as well as histological parameters of liver damage were analyzed. Livers were stratified for expected viability according to the donor's medical history, procurement data, and their macroscopic appearance. Normothermic perfusion preservation of human livers for 24 hours was shown to be technically feasible. Human liver grafts, all of which had been discarded for transplantation, showed levels suggesting organ viability with respect to metabolic and synthetic liver function (to varying degrees). There was positive correlation between instantly available perfusion parameters and generally accepted predictors of posttransplant graft survival. In conclusion, NMP is feasible reliably for periods of at least 24 hours, even in highly suboptimal donor organs. Potential benefits include not only viability testing (as suggested in recent clinical implementations), but also removal of the time constraints associated with the utilization of high-risk livers, and recovery of ischemic and other preretrieval injuries (possibly by enabling therapeutic strategies during NMP). Liver Transplantation 23 207-220 2017 AASLD.
A BS TRACT: Background: Predicting prognosis in Parkinson's disease (PD) has important implications for individual prognostication and clinical trials design and targeting novel treatments. Blood biomarkers could help in this endeavor. Methods: We identified 4 blood biomarkers that might predict prognosis: apolipoprotein A1, C-reactive protein, uric acid and vitamin D. These biomarkers were measured in baseline serum from 624 Parkinson's disease subjects (median disease duration, 1.0 years; interquartile range, 0.5-2.0) from the Oxford Discovery prospective cohort. We compared these biomarkers against PD subtypes derived from clinical features in the baseline cohort using data-driven approaches. We used multilevel models with MDS-UPDRS parts I, II, and III and Montreal Cognitive Assessment as outcomes to test whether the biomarkers predicted subsequent progression in motor and nonmotor domains. We compared the biomarkers against age of PD onset and age at diagnosis. The q value, a false-discovery rate alternative to P values, was calculated as an adjustment for multiple comparisons. Results: Apolipoprotein A1 and C-reactive protein levels differed across our PD subtypes, with severe motor disease phenotype, poor psychological well-being, and poor sleep subtype having reduced apolipoprotein A1 and higher Creactive protein levels. Reduced apolipoprotein A1, higher C-reactive protein, and reduced vitamin D were associated with worse baseline activities of daily living (MDS-UPDRS II). Conclusion: Baseline clinical subtyping identified a proinflammatory biomarker profile significantly associated with a severe motor/nonmotor disease phenotype, lending biological validity to subtyping approaches. No blood biomarker predicted motor or nonmotor prognosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.