Liver transplantation is a highly successful treatment, but is severely limited by the shortage in donor organs. However, many potential donor organs cannot be used; this is because sub-optimal livers do not tolerate conventional cold storage and there is no reliable way to assess organ viability preoperatively. Normothermic machine perfusion maintains the liver in a physiological state, avoids cooling and allows recovery and functional testing. Here we show that, in a randomized trial with 220 liver transplantations, compared to conventional static cold storage, normothermic preservation is associated with a 50% lower level of graft injury, measured by hepatocellular enzyme release, despite a 50% lower rate of organ discard and a 54% longer mean preservation time. There was no significant difference in bile duct complications, graft survival or survival of the patient. If translated to clinical practice, these results would have a major impact on liver transplant outcomes and waiting list mortality.
Joint first authors. ISRCTN 14355416.The number of donor organs suitable for liver transplantation is restricted by cold preservation and ischemia-reperfusion injury. We present the first patients transplanted using a normothermic machine perfusion (NMP) device that transports and stores an organ in a fully functioning state at 37°C. In this Phase 1 trial, organs were retrieved using standard techniques, attached to the perfusion device at the donor hospital, and transported to the implanting center in a functioning state. NMP livers were matched 1:2 to cold-stored livers. Twenty patients underwent liver transplantation after NMP. Median NMP time was 9.3 (3.5-18.5) h versus median cold ischaemia time of 8.9 (4.2-11.4) h. Thirty-day graft survival was similar (100% NMP vs. 97.5% control, p = 1.00). Median peak aspartate aminotransferase in the first 7 days was significantly lower in the NMP group ) versus , p = 0.03). This first report of liver transplantation using NMP-preserved livers demonstrates the safety and feasibility of using this technology from retrieval to transplantation, including transportation. NMP may be valuable in increasing the number of donor livers and improving the function of transplantable organs.Abbreviations: AST, aspartate transaminase; DBD, donation after brain death; DCD, donation after circulatory death; IRI, ischemia-reperfusion injury; IVC, inferior vena cava; MELD, model for end-stage liver disease; NHSBT, National Health Service Blood and Transplant; NMP, normothermic machine perfusion
Biomedical acoustics is rapidly evolving from a diagnostic modality into a therapeutic tool and acoustic cavitation is often found to be the common denominator in a wide range of new therapeutic applications. High-intensity focussed ultrasound (HIFU) waves generated outside the body can be used to deposit heat deep within the body. Through a quantitative analysis of heat deposition by ultrasound, it is shown that inertial cavitation can help address some of the major challenges of HIFU therapy by providing a means of enhancing and monitoring treatment non-invasively. In the context of drug delivery, both inertial and stable cavitation are found to play a role in enhancing drug activity and uptake. In particular, shape oscillations arising during stable cavitation are shown to provide an effective micro-pumping mechanism for enhanced mass transport across inaccessible interfaces.
Acoustic cavitation has been shown to play a key role in a wide array of novel therapeutic ultrasound applications. This paper presents a brief discussion of the physics of thermally relevant acoustic cavitation in the context of high-intensity focussed ultrasound (HIFU). Models for how different types of cavitation activity can serve to accelerate tissue heating are presented, and results suggest that the bulk of the enhanced heating effect can be attributed to the absorption of broadband acoustic emissions generated by inertial cavitation. Such emissions can be readily monitored using a passive cavitation detection (PCD) scheme and could provide a means for real-time treatment monitoring. It is also shown that the appearance of hyperechoic regions (or bright-ups) on B-mode ultrasound images constitutes neither a necessary nor a sufficient condition for inertial cavitation activity to have occurred during HIFU exposure. Once instigated at relatively large HIFU excitation amplitudes, bubble activity tends to grow unstable and to migrate toward the source transducer, causing potentially undesirable pre-focal damage. Potential means of controlling inertial cavitation activity using pulsed excitation so as to confine it to the focal region are presented, with the intention of harnessing cavitation-enhanced heating for optimal HIFU treatment delivery. The role of temperature elevation in mitigating bubble-enhanced heating effects is also discussed, along with other bubble-field effects such as multiple scattering and shielding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.