During the Late Cretaceous the northeastern margin of the Arabian plate (Zagros–Fars Area) was characterized by significant variations in sedimentary facies, sedimentation patterns and accommodation space, and by shifting depocentres. A succession of events recording the evolution of the region from a passive to an active margin is documented by the study of eight outcrop sections and one well. This new study uses new age dating (benthic and planktonic foraminifers, nannoplankton and radiolarian biozonations and strontium isotope stratigraphy). The new observations provide a detailed overview of the response of the sedimentary system to changes in the tectonic regime related to obduction processes. These changes are very well shown in regional cross-sections and palaeogeographical maps. Three tectono-sedimentary phases are recognized indicating the evolution from a passive to an active margin: Phase I (Late Albian to Cenomanian, before obduction) comprises three depositional third-order sequences comparable with those of the other parts of the Zagros and Arabian plate. This interval is composed of shallow-water platform carbonates and intra-shelf basins. The platform facies consists of rudist and benthic foraminifer-dominated assemblages, whereas the intra-shelf basins contain an ‘Oligostegina’ facies. Eustatic sea-level variations and local differential subsidence controlled sediment deposition during this phase. Phase II (Turonian to Late Campanian, obduction phase) is characterized by major changes in depositional environments and sedimentary facies, as a result of obduction and foreland basin creation. It consists of pelagic and platform carbonates in the south, and a foreland basin with obducted radiolarites, ophiolitic and olistoliths or thrust slices in the north. During this phase, large volumes of turbidites and gravity flows with olistoliths were shed from both the SW and NE into the foreland basin. The age of the tectonic slices increases upward through the section, from Early Cretaceous at the base to Permian at the top. Based on various dating methods used on the far-travelled sediments, the depositional age of the radiolarites can be attributed to the Albian–Cenomanian, whereas the planktonic foraminifers are of Santonian to Campanian age. Phase III (Late Campanian to Maastrichtian, after obduction) shows the development of rudist-dominated carbonates in the NE prograding onto the deep basinal facies in the centre of study area. In the extreme NE no sediments of this age have been recorded, suggesting uplift at that time.
The Upper Cretaceous succession in the SE Zagros (Bandar Abbas area) is characterized by marked changes in fades and thickness. These changes relate to sediment deposition in a foreland basin along the NE margin of the Arabian plate. The succession was measured at eight outcrop sections in the Khush, Faraghun, Gahkum, Genow and Khamir anticlines. The measured sections illustrate a transition from shallow‐water carbonate platform deposits (Cenomanian to Coniacian) to deep‐water fades (Santonian to Maastrichtian). Outcrop observations were compared to data from ten off‐ and onshore wells and to a series of seismic profiles. Four cross‐sections were constructed using well and outcrop data and illustrate fades and thickness variations within the Upper Cretaceous. Based on these regional profiles, the Late Cretaceous depositional history of the Bandar Abbas area was reconstructed and can be divided into two tectono‐sedimentary phases suggesting a transition from a passive to an active margin. Sedimentation during Phase I (late Albion to Coniacian) took place in shallow‐water carbonate platform and intrashelf basin settings (Sarvak Formation), and four third‐order sequences can be recognised. The uppermost sequence is locally capped by fresh‐water, pisolith‐bearing carbonate sand and conglomerates with local laterite and palaeosols of the Coniacian Laffan Formation. Shallow‐water facies consist mainly of wackestone to packstones with abundant benthic foraminifera. Sediments deposited in intrashelf basins are dominated by oligosteginid‐bearing fades. Eustatic variations in sea level, the creation of a foreland basin and salt tectonics most probably controlled patterns of sedimentation during this phase. During the second tectono‐sedimentary phase (Phase II: Santonian to Late Maastrichtian), sediments were dominated by pelagic marls and gravity flow deposits. Lateral thickness variations become more marked to the NE as a result of obduction processes and the creation of the foreland basin. Allochthonous ophiolitic and radiolarite‐bearing units are common in the northern part of the Fars region but are restricted to a few localities in the Bandar Abbas area. Traces of allochthonous materials occur in the SE‐most part of the Khush anticline; thrust slices in offshore seismic profiles may link to the Hawasina nappes of Oman. At the top of the Phase II succession, pelagic facies locally interfinger with Omphalocyclus and Loftusia‐bearing fades (Tarbur Formation) and evaporites (Sachun Formation). These deposits are overlain by slumped and dolomitized shallow‐water carbonates of the Paleocene – Eocene Jahrum Formation. The sedimentary sequence in the Bandar Abbas area illustrates a far‐field response to Late Cretaceous obduction processes and foreland basin development, as well as to halokinetic activity. Rapid variations in thickness and fades document the evolution of depositional processes in the foreland basin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.