Abstract-Energy disaggregation or Non-Intrusive Load Monitoring (NILM) addresses the issue of extracting device-level energy consumption information by monitoring the aggregated signal at one single measurement point without installing meters on each individual device. Energy disaggregation can be formulated as a source separation problem where the aggregated signal is expressed as linear combination of basis vectors in a matrix factorization framework. In this paper an approach based on Sum-to-k constrained Non-negative Matrix Factorization (S2K-NMF) is proposed. By imposing the sum-to-k constraint and the non-negative constraint, S2K-NMF is able to effectively extract perceptually meaningful sources from complex mixtures. The strength of the proposed algorithm is demonstrated through two sets of experiments: Energy disaggregation in a residential smart home; and HVAC components energy monitoring in an industrial building testbed maintained at the Oak Ridge National Laboratory (ORNL). Extensive experimental results demonstrate the superior performance of S2K-NMF as compared to state-ofthe-art decomposition-based disaggregation algorithms.
Person re-identification (re-ID) is the task of matching person images across camera views, which plays an important role in surveillance and security applications. Inspired by great progress of deep learning, deep re-ID models began to be popular and gained state-of-the-art performance. However, recent works found that deep neural networks (DNNs) are vulnerable to adversarial examples, posing potential threats to DNNs based applications. This phenomenon throws a serious question about whether deep re-ID based systems are vulnerable to adversarial attacks.In this paper, we take the first attempt to implement robust physical-world attacks against deep re-ID. We propose a novel attack algorithm, called advPattern, for generating adversarial patterns on clothes, which learns the variations of image pairs across cameras to pull closer the image features from the same camera, while pushing features from different cameras farther. By wearing our crafted "invisible cloak", an adversary can evade person search, or impersonate a target person to fool deep re-ID models in physical world. We evaluate the effectiveness of our transformable patterns on adversaries' clothes with Market1501 and our established PRCS dataset. The experimental results show that the rank-1 accuracy of re-ID models for matching the adversary decreases from 87.9% to 27.1% under Evading Attack. Furthermore, the adversary can impersonate a target person with 47.1% rank-1 accuracy and 67.9% mAP under Impersonation Attack. The results demonstrate that deep re-ID systems are vulnerable to our physical attacks.
Despite recent attempts for solving the person re-identification problem, it remains a challenging task since a person's appearance can vary significantly when large variations in view angle, human pose and illumination are involved. In this paper, we propose a novel approach based on using a gradient-based attention mechanism in deep convolution neural network for solving the person re-identification problem. Our model learns to focus selectively on parts of the input image for which the networks' output is most sensitive to and processes them with high resolution while perceiving the surrounding image in low resolution. Extensive comparative evaluations demonstrate that the proposed method outperforms state-of-the-art approaches on the challenging CUHK01, CUHK03 and Market 1501 datasets.
Learning binary representation is essential to large-scale computer vision tasks. Most existing algorithms require a separate quantization constraint to learn effective hashing functions. In this work, we present Direct Binary Embedding (DBE), a simple yet very effective algorithm to learn binary representation in an end-to-end fashion. By appending an ingeniously designed DBE layer to the deep convolutional neural network (DCNN), DBE learns binary code directly from the continuous DBE layer activation without quantization error. By employing the deep residual network (ResNet) as DCNN component, DBE captures rich semantics from images. Furthermore, in the effort of handling multilabel images, we design a joint cross entropy loss that includes both softmax cross entropy and weighted binary cross entropy in consideration of the correlation and independence of labels, respectively. Extensive experiments demonstrate the significant superiority of DBE over state-of-the-art methods on tasks of natural object recognition, image retrieval and image annotation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.