Classifying limb movements using brain activity is an important task in Brain-computer Interfaces (BCI) that has been successfully used in multiple application domains, ranging from human-computer interaction to medical and biomedical applications. This paper proposes a novel solution for classification of left/right hand movement by exploiting a Long Short-Term Memory (LSTM) network with attention mechanism to learn the electroencephalogram (EEG) time-series information. To this end, a wide range of time and frequency domain features are extracted from the EEG signals and used to train an LSTM network to perform the classification task. We conduct extensive experiments with the EEG Movement dataset and show that our proposed solution our method achieves improvements over several benchmarks and state-of-the-art methods in both intrasubject and cross-subject validation schemes. Moreover, we utilize the proposed framework to analyze the information as received by the sensors and monitor the activated regions of the brain by tracking EEG topography throughout the experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.