Purpose This study aims to employ a modern numerical approach for conducting the simulations, which uses the smoothed-profile lattice Boltzmann method. Two separate distribution functions for flow and temperature fields are used to solve the Navier–Stokes equations in the most efficient manner. In addition, the Koo–Kleinstreuer–Li model is used to calculate the dynamic viscosity and thermal conductivity in the desired volume fractions, and the effect of Brownian motion is taken into consideration. Design/methodology/approach Nowadays, because of enhanced global price of oil and critical issue of global warming, a significant demand for using renewable energy exists. The solar energy is one of the most popular forms of renewable energy. The solar collector can be used to collect and trap the energy received from the sun. The present work focuses on introducing and investigating a parabolic-trough solar collector. Findings To analyze all hydrodynamic and thermal views of the solar collector, the structure of nanofluid stream, distribution of temperature, local dissipations because of flow and heat transfer, volumetric entropy production, Bejan number vs Rayleigh number and volume fraction are presented. Also, three different configurations for profile of solar receiver are designed and studied. Originality/value The originality of the present work is in using a modern numerical approach for a well-known application. Also, the effect of Brownian motion is taken into account which significantly enhances the accuracy.
Purpose This paper aims to analyze the effect of absorber’s geometry and operating fluid on the thermal and hydrodynamic behaviors of a solar collector. Two different profiles are proposed for the absorber which is wavy and flat. Also, the inner tube of HTF (i.e. heat transfer fluid) is considered as single and double. The solar collector is filled with hybrid nanofluid of SiO2-TiO2/ ethylene glycol (EG) which its thermal conductivity and dynamic viscosity are measured using KD2 Pro and Brookfield LVDV III Ultra; respectively, in the temperature range of 30°C to 80°C and nanoparticle concentration in the range of 1.5% to 3.5%. Design/methodology/approach Among the solar collector, the parabolic-trough solar collector is one of the most efficient models for extracting solar thermal power. A parabolic trough solar collector with two different models of absorbers and included with two models of inner HTF tube is proposed. Findings The corresponding regression equations are derived versus temperature and volume fraction and used in the numerical process. For the numerical process, the thermal lattice Boltzmann method manipulated with a single-node curved scheme is used. Also, in the final step, the second law analysis is carried out in local and volumetric forms. The influential factors are Rayleigh number, the concentration of hybrid nano-powder and the structure of absorber profile. Originality/value The originality of the present work is combining a modern numerical method (i.e. double-population lattice Boltzmann method) with experimental observation on characteristics of SiO2-TiO2/EG nanofluid to analyze the thermal performance of parabolic trough solar collector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.