Mathematical models are presented for PVs, wind turbines, battery storages and diesel generators for optimal in a hybrid isolated system. The optimization model is formulated and a case study is run in a ruralnonelectrified area of Iran.
This study proposes a fuzzy self-organized neural networks (SOM) model for detecting fraud by domestic customers, the major cause of non-technical losses in power distribution networks. Using a bottom-up approach, normal behavior patterns of household loads with and without photovoltaic (PV) sources are determined as normal behavior. Customers suspected of energy theft are distinguished by calculating the anomaly index of each subscriber. The bottom-up method used is validated using measurement data of a real network. The performance of the algorithm in detecting fraud in old electromagnetic meters is evaluated and verified. Types of energy theft methods are introduced in smart meters. The proposed algorithm is tested and evaluated to detect fraud in smart meters also.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.