Ethylene glycol (EG)-based lubricant was prepared with dissolved organosolv lignin from birch wood (BL) and softwood (SL) biomass. The effects of different lignin types on the rheological, thermal, and tribological properties of the lignin/EG lubricants were comprehensively investigated by various characterization techniques. Dissolving organosolv lignin in EG results in outstanding lubricating properties. Specifically, the wear volume of the disc by EG-44BL is only 8.9% of that lubricated by pure EG. The enhanced anti-wear property of the EG/lignin system could be attributed to the formation of a robust lubrication film and the strong adhesion of the lubricant on the contacting metal surface due to the presence of a dense hydrogen bonding (H-bonding) network. The lubricating performance of EG-BL outperforms EG-SL, which could be attributed to the denser H-bonding sites in BL and its broader molecular weight distribution. The disc wear loss of EG-44BL is only 45.7% of that lubricated by EG-44SL. Overall, H-bonding is the major contributor to the different tribological properties of BL and SL in EG-based lubricants.
Piston rings (PR) are known for almost a quarter of the friction losses in internal combustion engines. This research work aims to improve the tribological performance of PR by a recently developed variant of Diamond-like Carbon (DLC) coatings deposited in a mixture of Ar and Ne plasma atmosphere (Ne-DLC) by high-power impulse magnetron sputtering (HiPIMS). For the benchmark, the widely used Chromium Nitride (CrN) and DLCs deposited in pure Ar plasma atmosphere (Ar-DLC) were used. The tribological tests were performed on a block-on-ring configuration under different lubrication regimes by varying temperatures and sliding speeds. The analysis of the results was performed by Stribeck curves corresponding to each sample. An improvement of the tribological performance was observed for Ne-DLC films by up to 22.8% reduction in COF compared to CrN in the boundary lubrication regime, whereas, for the Ar-DLC film, this reduction was only 9.5%. Moreover, the Ne-DLC films achieved ultralow friction of less than 0.001 during the transition to a hydrodynamic lubrication regime due to better wettability (lower contact angle) and higher surface free energy. Increasing the Ne up to 50% in the discharge gas also leads to an increase of hardness of DLC films from 19 to 24 GPa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.