Responses of ON‐ and OFF‐ganglion cells (GCs) were recorded extracellularly from their axon terminals in the medial sublamina of tectal retino‐recipient layer of immobilized cyprinid fish (goldfish and carp). These units were recorded deeper than direction selective (DS) ones and at the same depth where responses of orientation selective (OS) GCs were recorded. Prominent responses of these units are evoked by small contrast spots flickering within or moving across their visual field. They are not selective either to the direction of motion or to the orientation of stimuli and are not characterized by any spontaneous spike activity. We refer to these fish GCs as spot detectors (SDs) by analogy with the frog SD. Receptive fields (RFs) of SDs are organized concentrically: the excitatory center (about 4.5°) is surrounded by opponent periphery. Study of interactions in the RF has shown that inhibitory influences are generated already inside the central RF area. This fact suggests that RFs of SDs cannot be defined as homogeneous sensory zone driven by a linear mechanism of response generation. Physiological properties of fish SDs are compared with the properties of frog SDs and analogous mammalian retinal GCs—local edge detectors (LEDs). The potential role of the SDs in visually guided fish behavior is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.