The delivery and display of 360-degree videos on Head-Mounted Displays (HMDs) presents many technical challenges. 360-degree videos are ultra high resolution spherical videos, which contain an omnidirectional view of the scene. However only a portion of this scene is displayed on the HMD. Moreover, HMD need to respond in 10 ms to head movements, which prevents the server to send only the displayed video part based on client feedback. To reduce the bandwidth waste, while still providing an immersive experience, a viewport-adaptive 360degree video streaming system is proposed. The server prepares multiple video representations, which differ not only by their bit-rate, but also by the qualities of different scene regions. The client chooses a representation for the next segment such that its bit-rate fits the available throughput and a full quality region matches its viewing. We investigate the impact of various spherical-to-plane projections and quality arrangements on the video quality displayed to the user, showing that the cube map layout offers the best quality for the given bit-rate budget. An evaluation with a dataset of users navigating 360-degree videos demonstrates that segments need to be short enough to enable frequent view switches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.