The Rosetta software suite for macromolecular modeling, docking, and design is widely used in pharmaceutical, industrial, academic, non-profit, and government laboratories. Despite its broad modeling capabilities, Rosetta remains consistently among leading software suites when compared to other methods created for highly specialized protein modeling and design tasks. Developed for over two decades by a global community of over 60 laboratories, Rosetta has undergone multiple refactorings, and now comprises over three million lines of code. Here we discuss methods developed in the last five years in Rosetta, involving the latest protocols for structure prediction; protein-protein and protein-small molecule docking; protein structure and interface design; loop modeling; the incorporation of various types of experimental data; modeling of peptides, antibodies and proteins in the immune system, nucleic acids, non-standard chemistries, carbohydrates, and membrane proteins. We briefly discuss improvements to the energy function, user interfaces, and usability of the software. Rosetta is available at www.rosettacommons.org.
Highly accurate protein structure predictions by deep neural networks such as AlphaFold2 and RoseTTAFold have tremendous impact on structural biology and beyond. Here, we show that, although these deep learning approaches have originally been developed for the in silico folding of protein monomers, AlphaFold2 also enables quick and accurate modeling of peptide–protein interactions. Our simple implementation of AlphaFold2 generates peptide–protein complex models without requiring multiple sequence alignment information for the peptide partner, and can handle binding-induced conformational changes of the receptor. We explore what AlphaFold2 has memorized and learned, and describe specific examples that highlight differences compared to state-of-the-art peptide docking protocol PIPER-FlexPepDock. These results show that AlphaFold2 holds great promise for providing structural insight into a wide range of peptide–protein complexes, serving as a starting point for the detailed characterization and manipulation of these interactions.
Significance Modeling interactions between short peptides and their receptors is a challenging docking problem due to the peptide flexibility, resulting in a formidable sampling problem of peptide conformation in addition to its orientation. Alternatively, the peptide can be viewed as a piece that complements the receptor monomer structure. Here, we show that the peptide conformation can be determined based on the receptor backbone only and sampled using local structural motifs found in solved protein monomers and interfaces, independent of sequence similarity. This approach outperforms current peptide docking protocols and promotes new directions for peptide interface design.
Highly accurate protein structure predictions by the recently published deep neural networks such as AlphaFold2 and RoseTTAFold are truly impressive achievements, and will have a tremendous impact far beyond structural biology. If peptide-protein binding can be seen as a final complementing step in the folding of a protein monomer, we reasoned that these approaches might be applicable to the modeling of such interactions. We present a simple implementation of AlphaFold2 to model the structure of peptide-protein interactions, enabled by linking the peptide sequence to the protein c-terminus via a poly glycine linker. We show on a large non-redundant set of 162 peptide-protein complexes that peptide-protein interactions can indeed be modeled accurately. Importantly, prediction is fast and works without multiple sequence alignment information for the peptide partner. We compare performance on a smaller, representative set to the state-of-the-art peptide docking protocol PIPER-FlexPepDock, and describe in detail specific examples that highlight advantages of the two approaches, pointing to possible further improvements and insights in the modeling of peptide-protein interactions. Peptide-mediated interactions play important regulatory roles in functional cells. Thus the present advance holds much promise for significant impact, by bringing into reach a wide range of peptide-protein complexes, and providing important starting points for detailed study and manipulation of many specific interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.