Laccases (EC 1.10.3.2) are multicopper oxidoreductases acting on diphenols and related substances. Laccases are highly important for biotechnology and environmental remediation. These enzymes contain mononuclear one T2 copper ion and two T3 copper ions (Cu3α and Cu3β), which form the so-called trinuclear center (TNC). Along with the typical three-domain laccases Bacteria produce two-domain (2D) enzymes, which are active at neutral and basic pH, thermostable, and resistant to inhibitors. In this work we present the comparative analysis of crystal structures and catalytic properties of recombinant 2D laccase from Streptomyces griseoflavus Ac-993 (SgfSL) and its four mutant forms with replacements of two amino acid residues, located at the narrowing of the presumable T3-solvent tunnels. We obtained inactive enzymes with substitutions of His165, with Phe, and Ile170 with Ala or Phe. His165Ala variant was more active than the wild type. We suggest that His165 is a “gateway” at the O2-tunnel leading from solvent to the Cu3β of the enzyme. The side chain of Ile170 could be indirectly involved in the coordination of copper ions at the T3 center by maintaining the position of the imidazole ring of His157 that belongs to the first coordination sphere of Cu3α.
Ribosomal protein L1, as part of the L1 stalk of the 50S ribosomal subunit, is implicated in directing tRNA movement through the ribosome during translocation. High-resolution crystal structures of four mutants (T217V, T217A, M218L and G219V) of the ribosomal protein L1 from Thermus thermophilus (TthL1) in complex with a specific 80 nt fragment of 23S rRNA and the structures of two of these mutants (T217V and G219V) in the RNA-unbound form are reported in this work. All mutations are located in the highly conserved triad Thr-Met-Gly, which is responsible for about 17% of all protein-RNA hydrogen bonds and 50% of solvent-inaccessible intermolecular hydrogen bonds. In the mutated proteins without bound RNA the RNA-binding regions show substantial conformational changes. On the other hand, in the complexes with RNA the structures of the RNA-binding surfaces in all studied mutants are very similar to the structure of the wild-type protein in complex with RNA. This shows that formation of the RNA complexes restores the distorted surfaces of the mutant proteins to a conformation characteristic of the wild-type protein complex. Domain I of the mutated TthL1 and helix 77 of 23S rRNA form a rigid body identical to that found in the complex of wild-type TthL1 with RNA, suggesting that the observed relative orientation is conserved and is probably important for ribosome function. Analysis of the complex structures and the kinetic data show that the number of intermolecular contacts and hydrogen bonds in the RNA-protein contact area does not correlate with the affinity of the protein for RNA and cannot be used as a measure of affinity.
Ribosomal protein L4 is a regulator of protein synthesis in the Escherichia coli S10 operon, which contains genes of 11 ribosomal proteins. In this work, we have investigated regulatory functions of ribosomal protein L4 of the thermophilic archaea Methanococcus jannaschii. The S10-like operon from M. jannaschii encodes not 11, but only five ribosomal proteins (L3, L4, L23, L2, S19), and the first protein is L3 instead of S10. We have shown that MjaL4 and its mutant form lacking an elongated loop specifically inhibit expression of the first gene of the S10-like operon from the same organism in a coupled transcription-translation system in vitro. By deletion analysis, an L4-binding regulatory site has been found on MjaL3 mRNA, and a fragment of mRNA with length of 40 nucleotides has been prepared that is necessary and sufficient for the specific interaction with the MjaL4 protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.