Expression of endothelial nitric-oxide synthase (eNOS) mRNA is highly restricted to the endothelial cell layer of medium to large sized arterial blood vessels. Here we assessed the chromatin environment of the eNOS gene in expressing and nonexpressing cell types. Within endothelial cells, but not a variety of nonendothelial cells, the nucleosomes that encompassed the eNOS core promoter and proximal downstream coding regions were highly enriched in acetylated histones H3 and H4 and methylated lysine 4 of histone H3. This differentially modified chromatin domain was selectively associated with functionally competent RNA polymerase II complexes. Endothelial cells were particularly enriched in acetylated histone H3 lysine 9, histone H4 lysine 12, and di-and tri-methylated lysine 4 of histone H3 at the core promoter. Histone modifications at this region, which we have previously demonstrated to exhibit cell-specific DNA methylation, were functionally relevant to eNOS expression. Inhibition of histone deacetylase activity by trichostatin A increased acetylation of histones H3 and H4 at the eNOS proximal promoter in nonexpressing cell types and led to increased steadystate eNOS mRNA transcript levels. H3 lysine 4 methylation was also essential for eNOS expression, since treatment of endothelial cells with methylthioadenosine, a known lysine 4 methylation inhibitor, decreased eNOS RNA levels, H3 lysine 4 methylation, and RNA polymerase II loading at the eNOS proximal promoter. Importantly, methylthioadenosine also prevented the trichostatin A-mediated increase in eNOS mRNA transcript levels in nonendothelial cells. Taken together, these findings provide strong evidence that the endothelial cell-specific expression of eNOS is controlled by cell-specific histone modifications.Endothelial nitric-oxide synthase (eNOS, 1 NOS3) is constitutively expressed in vascular endothelial cells, especially the endothelial layer of medium to large sized arterial blood vessels, where it is known to play a key role in vascular wall homeostasis and regulation of vasomotor tone. Studying the mechanisms regulating the constitutive transcription of eNOS in endothelial cells is essential to understand how these mechanisms may be perturbed in diseases characterized by a decrease in eNOS mRNA in the vascular endothelium. For example, constitutive expression of eNOS is compromised in the endothelial cells overlying advanced human atherosclerotic plaques (1-3).In general, the basis for endothelium-specific gene expression is not known. Whereas models involving DNA-binding transcription factors (e.g. AP-1, Ets family members, GATA-2, octamer proteins, or Sp1) (4 -7) have been invoked to explain the transcriptional control of a variety of endothelial genes, these models cannot fully account for the exquisite specificity of these endothelium-specific promoters, given that these transfactors are ubiquitously expressed. This can be contrasted with the control of muscle-specific or adipocyte-specific genes, which are controlled by "master regulators," i...
A marked difference exists in the inducibility of inducible NO synthase (iNOS) between humans and rodents. Although important cis and trans factors in the murine and human iNOS promoters have been characterized using episomal-based approaches, a compelling molecular explanation for why human iNOS is resistant to induction has not been reported. In this study we present evidence that the hyporesponsiveness of the human iNOS promoter is based in part on epigenetic silencing, specifically hypermethylation of CpG dinucleotides and histone H3 lysine 9 methylation. Using bisulfite sequencing, we demonstrated that the iNOS promoter was heavily methylated at CpG dinucleotides in a variety of primary human endothelial cells and vascular smooth muscle cells, all of which are notoriously resistant to iNOS induction. In contrast, in human cell types capable of iNOS induction (e.g., A549 pulmonary adenocarcinoma, DLD-1 colon adenocarcinoma, and primary hepatocytes), the iNOS promoter was relatively hypomethylated. Treatment of human cells, such as DLD-1, with a DNA methyltransferase inhibitor (5-azacytidine) induced global and iNOS promoter DNA hypomethylation. Importantly, 5-azacytidine enhanced the cytokine inducibility of iNOS. Using chromatin immunoprecipitation, we found that the human iNOS promoter was basally enriched with di- and trimethylation of H3 lysine 9 in endothelial cells, and this did not change with cytokine addition. This contrasted with the absence of lysine 9 methylation in inducible cell types. Importantly, chromatin immunoprecipitation demonstrated the selective presence of the methyl-CpG-binding transcriptional repressor MeCP2 at the iNOS promoter in endothelial cells. Collectively, our work defines a role for chromatin-based mechanisms in the control of human iNOS gene expression.
Spondyloarthritides are a group of inflammatory rheumatological diseases that cause arthritis with a predilection for spinal or sacroiliac involvement in addition to a high association with HLA-B27. Juvenile spondyloarthritis is distinct from adult spondyloarthritis and manifests more frequently as peripheral arthritis and enthesitis. Consequently juvenile spondyloarthritis is often referred to as enthesitis-related arthritis (ERA) subtype under the juvenile idiopathic arthritis (JIA) classification criteria. The American College of Rheumatology Treatment Recommendations for JIA, including ERA, are based on the following clinical parameters: current treatment, disease activity and the presence of poor prognostic features. The MRI features of juvenile spondyloarthritis include marrow edema, peri-enthesal soft-tissue swelling and edema, synovitis and joint or bursal fluid. Marrow edema is nonspecific and can be seen with other pathologies as well as in healthy subjects, and this is an important pitfall to consider. With further longitudinal study and validation, however, whole-body MRI with dedicated images of the more commonly affected areas such as the spine, sacroiliac joints, hips, knees, ankles and feet can serve as a more objective tool compared to clinical exam for early detection and monitoring of disease activity and ultimately direct therapeutic management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.