Peptides are among the most efficient classes of crystal growth modifiers for a wide range of natural and synthetic systems owing to their unmatched design space that affords the opportunity to construct highly specific sequences to tailor crystal growth. In the case of zeolite crystallization, the high pH and temperature of common synthesis conditions renders peptides ineffective for such applications. Here, we introduce peptoids as a biomimetic platform for the rational design of zeolite growth modifiers. The chemical robustness of peptoids coupled with their facile and efficient synthesis on solid support, which enables the generation of versatile sequences with diverse chemical functionality, make these materials ideal for the relatively harsh conditions of zeolite crystallization. A library of peptoids incorporating combinations of alcohol, amine, ether, and aromatic functional moieties were synthesized and tested in growth solutions of zeolite L (LTL type), a common commercial material. Our findings reveal that peptoids are potent modifiers of zeolite L crystallization. Syntheses with 1 wt % are often sufficient to suppress nucleation, indicating a strong interaction between peptoids and the amorphous precursors formed during the early stages of zeolite L synthesis. Chemical analysis reveals that a significant fraction of peptoid remains intact at pH 13 and 160 °C, though peptoid degradation occurs with prolonged hydrothermal treatment. Time-resolved analysis of products removed from zeolite L growth mixtures reveals that amines interact more favorably than alcohols with precursors/crystals. Our studies also confirm that peptoids can be tailored to either increase or decrease the length-to-width aspect ratio of cylindrical zeolite L crystals through the insertion of hydrophilic or hydrophobic groups, respectively. The mechanisms of peptoid action are discussed within the context of complex nonclassical pathways of zeolite crystallization. Moreover, this study provides the first testing and validation of peptoids as zeolite growth modifiers, thus opening new avenues in the future to extend this general platform to other zeolite framework types and related materials grown under conditions that are too severe for biomolecules.
Peptoids, N-substituted glycine oligomers, are an important class of foldamers that can adopt polyproline-type helices (PP-I and PP-II), given that the majority of their sequence consists of chiral, bulky side chains. Herein a new approach for the stabilization of a pure PP-I-like peptoid helix through metal coordination is introduced. A systematic spectroscopic study was performed on a series of peptoid heptamers bearing two 8-hydroxyquinoline ligands at fixed positions, and a mixture of chiral benzyl and alkyl substituents in varied positions along the peptoid backbone. When the benzyl groups are located at the 3rd and 4th positions, the peptoid (7P6) gives upon Cu binding a circular dichroism (CD) signal similar to that of a PP-I helix. Exciton couplet CD spectroscopy and EPR spectroscopy, as well as modifications to the length of 7P6 and derivatization through acetylation provided insights into the unique folding of 7P6 upon Cu binding, showing that it is led by two competing driving forces, namely coordination geometry and sequence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.