Chronic alcohol consumption induces hepatic oxidative stress resulting in production of highly reactive electrophilic α/β-unsaturated aldehydes that have the potential to modify proteins. A primary mechanism of reactive aldehyde detoxification by hepatocytes is through GSTA4-driven enzymatic conjugation with GSH. Given reports that oxidative stress initiates GSTA4 translocation to the mitochondria, we hypothesized that increased hepatocellular damage in ethanol (EtOH)-fed GSTA4−/− mice is due to enhanced mitochondrial protein modification by reactive aldehydes. Chronic ingestion of EtOH increased hepatic protein carbonylation in GSTA4−/− mice as evidenced by increased 4-HNE and MDA immunostaining in the hepatic periportal region. Using mass spectrometric analysis of biotin hydrazide conjugated carbonylated proteins, a total of 829 proteins were identified in microsomal, cytosolic and mitochondrial fractions. Of these, 417 were novel to EtOH models. Focusing on mitochondrial fractions, 1.61-fold more carbonylated proteins were identified in EtOH-fed GSTA4−/− mice compared to their respective WT mice ingesting EtOH. Bioinformatic KEGG pathway analysis of carbonylated proteins from the mitochondrial fractions revealed an increased propensity for modification of proteins regulating oxidative phosphorylation, glucose, fatty acid, glutathione and amino acid metabolic processes in GSTA4−/− mice. Additional analysis revealed sites of reactive aldehyde protein modification on 26 novel peptides/proteins isolated from either SV/GSTA4−/− PF or EtOH fed mice. Among the peptides/proteins identified, ACSL, ACOX2, MTP, and THIKB contribute to regulation of fatty acid metabolism and ARG1, ARLY, and OAT, which regulate nitrogen and ammonia metabolism having direct relevance to ethanol-induced liver injury. These data define a role for GSTA4-4 in buffering hepatic oxidative stress associated with chronic alcohol consumption and that this GST isoform plays an important role in protecting against carbonylation of mitochondrial proteins.
Objective Oxidative stress is a significant contributing factor in the pathogenesis of alcoholic liver disease (ALD). In the murine models of chronic alcohol consumption, induction of oxidative stress results in increased peroxidation of polyunsaturated fatty acids to form highly reactive electrophilic α/β unsaturated aldehydes that post-translationally modify proteins altering activity. Data are presented here suggesting that oxidative stress and the resulting carbonylation of hepatic proteins is an ongoing process involved in alcohol-induced cirrhosis. Methods Using age-matched pooled hepatic tissue obtained from healthy humans and patients with end stage cirrhotic ALD, overall carbonylation was assessed by immunohistochemistry and LC-MS/MS of streptavidin purified hepatic whole cell extracts treated with biotin hydrazide. Identified carbonylated proteins were further evaluated using bioinformatics analyses. Results Using immunohistochemistry and Western blotting, protein carbonylation was increased in end stage ALD occurring primarily in hepatocytes. Mass spectrometric analysis revealed a total of 1224 carbonylated proteins in normal hepatic and end-stage alcoholic cirrhosis tissue. Of these, 411 were unique to cirrhotic ALD, 261 unique to normal hepatic tissue and 552 common to both groups. Bioinformatic pathway analysis of hepatic carbonylated proteins revealed a propensity of long term EtOH consumption to increase post-translational carbonylation of proteins involved in glutathione homeostatic, glycolytic and cytoskeletal pathways. Western analysis revealed increased expression of GSTA4 and GSTπ in human ALD. Using LC-MS/MS analysis, a nonenaldehyde post-translational modification was identified on Lysine 235 of the cytoskeletal protein vimentin in whole cell extracts prepared from human end stage ALD hepatic tissue. Conclusions: These studies are the first to use LC-MS/MS analysis of carbonylated proteins in human ALD and begin exploring possible mechanistic links with end-stage alcoholic cirrhosis and oxidative stress.
Objective In the liver, a contributing factor in the pathogenesis of non-alcoholic fatty liver disease is oxidative stress leading to the accumulation of highly reactive electrophilic α/β unsaturated aldehydes. The objective of this study was to determine if significant differences were evident when evaluating carbonylation in human end-stage fatty nonalcoholic steatohepatitis (fNASH) compared to end-stage nonfatty NASH (nfNASH). Methods Using hepatic tissue obtained from healthy humans and patients diagnosed with end stage nfNASH or fNASH, overall carbonylation was assessed by immunohistochemistry (IHC) and LC-MS/MS followed by bioinformatics. Results Picrosirius red staining revealed extensive fibrosis in both fNASH and nfNASH which corresponded with increased reactive aldehyde staining. Although significantly elevated when compared to normal hepatic tissue, no significant differences in overall carbonylation and fibrosis were evident when comparing fNASH with nfNASH. Examining proteins that are critical for anti-oxidant defense revealed elevated expression of thioredoxin, thioredoxin interacting protein, glutathione S-transferase p1 and mitochondrial superoxide dismutase in human NASH. As important, using immunohistochemistry, significant colocalization of the aforementioned proteins occurred in cytokeratin 7 positive cells indicating that they are part of the ductular reaction. Expression of catalase and Hsp70 decreased in both groups when compared to normal human liver. Mass spectrometric analysis revealed a total of 778 carbonylated proteins. Of these, 194 were common to all groups, 124 unique to tissue prepared from healthy individuals, 357 proteins exclusive to NASH, 124 proteins distinct to samples from patients with fNASH and 178 unique to nfNASH. Using functional enrichment analysis of hepatic carbonylated proteins revealed a propensity for increased carbonylation of proteins regulating cholesterol and Huntington’s disease related pathways occurred in nfNASH. Examining fNASH, increased carbonylation was evident in proteins regulating Rho cytoskeletal pathways, nicotinic acetylcholine receptor signaling and chemokine/cytokine inflammatory pathways. Using LC-MS/MS analysis and trypsin digests, sites of carbonylation were identified on peptides isolated from vimentin, endoplasmin and serum albumin in nfNASH and fNASH respectively. Conclusions These results indicate that cellular factors regulating mechanisms of protein carbonylation may be different depending on pathological diagnosis of NASH. Furthermore these studies are the first to use LC-MS/MS analysis of carbonylated proteins in human NAFLD and explore possible mechanistic links with end stage cirrhosis due to fatty liver disease and the generation of reactive aldehydes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.