Spreading of small unilamellar vesicles on solid surfaces is one of the most common ways to obtain supported lipid bilayers. Although the method has been used successfully for many years, the details of this process are still the subject of intense debate. Particularly controversial is the mechanism of bilayer formation on metallic surfaces like gold. In this work, we have employed scanning probe microscopy techniques to evaluate the details of lipid vesicles spreading and formation of the lipid bilayer on a Au(111) surface in a phosphate-buffered saline solution. Nanoscale imaging revealed that the mechanism of this process differs significantly from that usually assumed for hydrophilic surfaces such as mica, glass, and silicon oxide. Formation of the bilayer on gold involves several steps. Initially, the vesicles accumulate on a gold surface and release lipid molecules that adsorb on a Au(111) surface, giving rise to the appearance of highly ordered stripelike domains. The latter serve as a template for the buildup of a hemimicellar film, which contributes to the increased hydrophilicity of the external surface and facilitates further adsorption and rupture of the vesicles. As a result, the bilayer is spread over a hemimicellar film, and then it is followed by slow fusion between coupled layers leading to formation of a single bilayer supported on a gold surface. We believe that the results presented in this work may provide some new insights into the area of research related to supported lipid bilayers.
We have characterized planar lipid films composed of phosphatidylethanolamines (PE) and phosphatidylglycerols (PG) from E. coli bacteria. The nature of the interactions and miscibility of PE and PG components within mixed lipid films was evaluated based on surface pressure measurements and Brewster angle microscopy imaging at the air-water interface. We have found that PE and PG components show tendency to form separated domains at surface pressures relevant for biological membranes. Further, we have directly compared mechanisms of formation of supported lipid bilayers either on mica or Au(111) by spreading of small unilamellar vesicles. The bilayer formation was monitored by in situ atomic force microscopy imaging. The pathways of the vesicles spreading on each substrate are substantially different and the buildup of the bilayer on Au(111) occurs through complex multistep mechanism. The morphology and nanomechanical properties of the resulting PE/PG bilayers were thoroughly compared. We have found that the interactions between lipids and supporting substrate significantly affect molecular organization within the films since the bilayer on Au(111) is uniform in terms of the topography, while the same lipid composition on mica results in formation of distinct gel and liquid disordered domains. Different molecular organization affects also nanomechanical properties of lipid films. The latter were expressed in terms of Young's moduli and bending stiffness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.