PurposeTo assess the effect of applying a protocol for image selection and the number of images required for adequate quantification of corneal nerve pathology using in vivo corneal confocal microscopy (IVCCM).MethodsIVCCM was performed in 35 participants by a single examiner. For each participant, 4 observers used a standardized protocol to select 6 central corneal nerve images to assess the inter-observer variability. Furthermore, images were selected by a single observer on two occasions to assess intra-observer variability and the effect of sample size was assessed by comparing 6 with 12 images. Corneal nerve fiber density (CNFD), branch density (CNBD) and length (CNFL) were quantified using fully automated software. The data were compared using the intra class correlation coefficient (ICC) and Bland-Altman agreement plots for all experiments.ResultsThe ICC values for CNFD, CNBD and CNFL were 0.93 (P<0.0001), 0.96 (P<0.0001) and 0.95 (P<0.0001) for inter-observer variability and 0.95 (P<0.0001), 0.97 (P<0.001) and 0.97 (P<0.0001) for intra-observer variability. For sample size variability, ICC values were 0.94 (P<0.0001), 0.95 (P<0.0001), and 0.96 (P<0.0001) for CNFD, CNBD and CNFL. Bland-Altman plots showed excellent agreement for all parameters.ConclusionsThis study shows that implementing a standardized protocol to select IVCCM images results in high intra and inter-observer reproducibility for all corneal nerve parameters and 6 images are adequate for analysis. IVCCM could therefore be deployed in large multicenter clinical trials with confidence.
We assessed whether a measure of more distal corneal nerve fibre loss at the inferior whorl(IW) region is better than proximal measures of central corneal nerve damage in relation to the diagnosis of diabetic peripheral neuropathy(DPN), painful DPN and quality of life(QoL). Participants underwent detailed assessment of neuropathy, QoL using the SF36 questionnaire, pain visual analogue score(VAS), and corneal confocal microscopy(CCM). Corneal nerve fibre density (CNFD), branch density (CNBD) and length (CNFL) at the central cornea and inferior whorl length (IWL) and average(ANFL) and total(TNFL) nerve fibre length were compared in patients with and without DPN and between patients with and without painful DPN and in relation to QoL. All CCM parameters were significantly reduced, but IWL was reduced ~three-fold greater than CNFL in patients with and without DPN compared to controls. IWL(p = 0.001), ANFL(p = 0.01) and TNFL(p = 0.02) were significantly lower in patients with painful compared to painless DPN. The VAS score correlated with IWL(r = −0.36, P = 0.004), ANFL(r = −0.32, P = 0.01) and TNFL(r = −0.32, P = 0.01) and QoL correlated with CNFL(r = 0.35, P = 0.01) and IWL(r = 0.4, P = 0.004). Corneal nerve fibre damage is more prominent at the IW, lower in patients with painful compared to painless neuropathy and relates to their QoL. IWL may provide additional clinical utility for CCM in patients with DPN.
To assess the diagnostic utility of corneal confocal microscopy (CCM) for diabetic peripheral neuropathy (DPN) and the risk factors for corneal nerve loss. RESEARCH DESIGN AND METHODSA total of 490 participants, including 72 healthy control subjects, 149 with type 1 diabetes, and 269 with type 2 diabetes, underwent detailed assessment of peripheral neuropathy and CCM in relation to risk factors. RESULTSCorneal nerve fiber density (CNFD) (P < 0.0001 and P < 0.0001), corneal nerve fiber branch density (CNBD) (P < 0.0001 and P < 0.0001), and corneal nerve fiber length (CNFL) (P < 0.0001 and P 5 0.02) were significantly lower in patients with type 1 and type 2 diabetes compared with control subjects. CNFD (P < 0.0001), CNBD (P < 0.0001), and CNFL (P < 0.0001) were lower in type 1 diabetes compared with type 2 diabetes. Receiver operating characteristic curve analysis for the diagnosis of DPN demonstrated a good area under the curve for CNFD of 0.81, CNBD of 0.74, and CNFL of 0.73. Multivariable regression analysis showed a significant association among reduced CNFL with age (b 5 20.27, P 5 0.007), HbA 1c (b 5 21.1; P 5 0.01), and weight (b 5 20.14; P 5 0.03) in patients with type 2 diabetes and with duration of diabetes (b 5 20.13; P 5 0.02), LDL cholesterol (b 5 1.8, P 5 0.04), and triglycerides (b 5 22.87; P 5 0.009) in patients with type 1 diabetes. CONCLUSIONSCCM identifies more severe corneal nerve loss in patients with type 1 diabetes compared with type 2 diabetes and shows good diagnostic accuracy for DPN. Furthermore, the risk factors for a reduction in corneal nerve fiber length differ between type 1 and type 2 diabetes. Diabetic peripheral neuropathy (DPN) is the most frequent long-term complication of diabetes (1). The diagnosis of DPN relies on abnormal symptoms and signs and electrophysiology. However, these tests do not reliably detect early damage to the small nerve fibers. Quantifying intraepidermal nerve fiber density is the gold standard for the assessment of small fiber damage but is an invasive procedure (2,3). Corneal confocal microscopy (CCM) is a rapid, noninvasive, ophthalmic imaging tool that is
Purpose There are limited data on the impact of bariatric surgery on microvascular complications of type 2 diabetes (T2D), particularly diabetic neuropathy. We assessed microvascular complications (especially neuropathy) in obese patients with T2D before and 12 months after bariatric surgery. Materials and Methods This was a prospective observational cohort study. Measurements of neuropathy symptom profile (NSP), neuropathy disability score (NDS), vibration (VPT), cold (CPT) and warm (WPT) perception thresholds, nerve conduction studies (NCS) and corneal confocal microscopy (CCM) to quantify corneal nerve fibre density (CNFD), branch density (CNBD) and fibre length (CNFL); urinary albumin/creatinine ratio (uACR), estimated glomerular filtration rate (eGFRcyst-creat) and retinal grading were taken. Results Twenty-six (62% female; median age 52 years) obese patients with T2D were recruited. Body mass index (BMI) (47.2 to 34.5 kg/m2; p < 0.001) decreased post-operatively. There were improvements in CNFD (27.1 to 29.2/mm2; p = 0.005), CNBD (63.4 to 77.8/mm2; p = 0.008), CNFL (20.0 to 20.2/mm2; p = 0.001), NSP (3 to 0/38; p < 0.001) and eGFRcyst-creat (128 to 120 ml/min; p = 0.015) post-bariatric surgery. Changes in (Δ) triglycerides were independently associated with ΔCNFL (β = − 0.53; p = 0.024) and Δsystolic blood pressure (β = 0.62;p = 0.017), and %excess BMI loss (β = − 0.004; p = 0.018) were associated with ΔeGFRcyst-creat. There was no significant change in NDS, VPT, CPT, WPT, NCS, uACR or retinopathy status. Glomerular hyperfiltration resolved in 42% of the 12 patients with this condition pre-operatively. Conclusion Bariatric surgery results in improvements in small nerve fibres and glomerular hyperfiltration in obese people with T2D, which were associated with weight loss, triglycerides and systolic blood pressure, but with no change in retinopathy or uACR at 12 months.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.