Erythropoiesis is one of the most demanding processes in the body, with more than 2 million red blood cells produced every second. Multiple hereditary and acquired red blood cell disorders arise from this complex system, with existing treatments effective in managing some of these conditions but few offering a long-term cure. Finding new treatments relies on the full understanding of the cellular and molecular interactions associated with the production and maturation of red blood cells, which take place within the erythroblastic island niche. The elucidation of processes associated within the erythroblastic island niche in health and during stress erythropoiesis has relied on in vivo modeling in mice, with complexities dissected using simple in vitro systems. Recent progress using state-of-the-art stem cell technology and gene editing has enabled a more detailed study of the human niche. Here, we review these different models and describe how they have been used to identify and characterize the cellular and molecular pathways associated with red blood cell production and maturation. We speculate that these systems could be applied to modeling red blood cell diseases and finding new druggable targets, which would prove especially useful for patients resistant to existing treatments. These models could also aid in research into the manufacture of red blood cells in vitro to replace donor blood transfusions, which is the most common treatment of blood disorders.
Macrophages are present in most vertebrate tissues and comprise widely dispersed and heterogeneous cell populations with different functions. They are key players in health and disease, acting as phagocytes during immune defense and mediating trophic, maintenance, and repair functions. Although it has been possible to study some of the molecular processes involved in human macrophage function, it has proved difficult to apply genetic engineering techniques to primary human macrophages. This has significantly hampered our ability to interrogate the complex genetic pathways involved in macrophage biology and to generate models for specific disease states. An off-the-shelf source of human macrophages that is amenable to the vast arsenal of genetic manipulation techniques would, therefore, provide a valuable tool in this field. We present an optimized protocol that allows for the generation of macrophages from human induced pluripotent stem cells (iPSCs) in vitro. These iPSC-derived macrophages (iPSC-DMs) express human macrophage cell surface markers, including CD45, 25F9, CD163, and CD169, and our live-cell imaging functional assay demonstrates that they exhibit robust phagocytic activity. Cultured iPSC-DMs can be activated to different macrophage states that display altered gene expression and phagocytic activity by the addition of LPS and IFNg, IL4, or IL10. Thus, this system provides a platform to generate human macrophages carrying genetic alterations that model specific human disease and a source of cells for drug screening or cell therapy to treat these diseases. Video Link The video component of this article can be found at https://www.jove.com/video/61038/ Representative Results Differentiation progression, macrophage number, and morphology The results presented are from the differentiation of the SFCi55 human iPSC line that has been described and used in a number of studies 8,9,10,26. The process of IPSC differentiation towards macrophages could be monitored by optical microscopy. iPSC colonies, embryoid bodies (EBs), hematopoietic suspension cells, and mature macrophages were morphologically distinct (Figure 2A). Mature macrophage
CD23, the low-affinity IgE receptor found on B lymphocytes and other cells, contains a C-terminal lectin-like domain that resembles C-type carbohydrate-recognition domains (CRDs) found in many glycan-binding receptors. In most mammalian species, the CD23 residues required to form a sugar-binding site are present, although binding of CD23 to IgE does not involve sugars. Solid-phase binding competition assays, glycoprotein blotting experiments, and glycan array analysis employing the lectin-like domains of cow and mouse CD23 demonstrate that they bind to mannose, GlcNAc, glucose, and fucose and to glycoproteins that bear these sugars in nonreducing terminal positions. Crystal structures of the cow CRD in the presence of α-methyl mannoside and GlcNAcβ1–2Man reveal that a range of oligosaccharide ligands can be accommodated in an open binding site in which most interactions are with a single terminal sugar residue. Although mouse CD23 shows a pattern of monosaccharide and glycoprotein binding similar to cow CD23, the binding is weaker. In contrast, no sugar binding was observed in similar experiments with human CD23. The absence of sugar-binding activity correlates with accumulation of mutations in the gene for CD23 in the primate lineage leading to humans, resulting in loss of key sugar-binding residues. These results are consistent with a role for CD23 in many species as a receptor for potentially pathogenic microorganisms as well as IgE. However, the ability of CD23 to bind several different ligands varies between species, suggesting that it has distinct functions in different organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.