miRWalk is an open-source platform providing an intuitive interface that generates predicted and validated miRNA-binding sites of known genes of human, mouse, rat, dog and cow. The core of miRWalk is the miRNA target site prediction with the random-forest-based approach software TarPmiR searching the complete transcript sequence including the 5’-UTR, CDS and 3’-UTR. Moreover, it integrates results other databases with predicted and validated miRNA-target interactions. The focus is set on a modular design and extensibility as well as a fast update cycle. The database is available using Python, MySQL and HTML/Javascript Database URL: http://mirwalk.umm.uni-heidelberg.de.
MicroRNA (miRNA) is a small non-coding molecule that is involved in gene regulation and RNA silencing by complementary on their targets. Experimental methods for target prediction can be time-consuming and expensive. Thus, the application of the computational approach is implicated to enlighten these complications with experimental studies. However, there is still a need for an optimized approach in miRNA biology. Therefore, machine learning (ML) would initiate a new era of research in miRNA biology towards potential diseases biomarker. In this article, we described the application of ML approaches in miRNA discovery and target prediction with functions and future prospective. The implementation of a new era of computational methodologies in this direction would initiate further advanced levels of discoveries in miRNA.
The pandemic of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people and claimed thousands of lives. Starting in China, it is arguably the most precipitous global health calamity of modern times. The entire world has rocked back to fight against the disease and the COVID-19 vaccine is the prime weapon. Even though the conventional vaccine development pipeline usually takes more than a decade, the escalating daily death rates due to COVID-19 infections have resulted in the development of fast-track strategies to bring in the vaccine under a year’s time. Governments, companies, and universities have networked to pool resources and have come up with a number of vaccine candidates. Also, international consortia have emerged to address the distribution of successful candidates. Herein, we summarize these unprecedented developments in vaccine science and discuss the types of COVID-19 vaccines, their developmental strategies, and their roles as well as their limitations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.