Increasing amount of evidence suggests that age-related dysregulation of neuronal Ca2+ homeostasis may play a proximal role in the pathogenesis of Alzheimer's disease, as impaired Ca2+ can cause synaptic deficits and contribute to the accumulation of Aβ plaques and neurofibrillary tangles.Ca2+ disruption is known to be mostly involved in all pathologies of Alzheimer's disease, the use of chemical agents or small molecules specific for Ca2+ channels, or the treatment of proteins on the plasma membrane and intracellular organelle membranes for correction is quite possible. Neuronal dysregulation of Ca2+ may open up a new approach to the prevention and treatment of Alzheimer's disease. The article shows the possible competition between the polyphenols PС-6, PС-7 and glutamate for the area of regulation of the opening of ion channels of ionotropic NMDA-receptors in the brain of rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.