The worldwide shortage of donor livers to transplant end stage liver disease patients has prompted the search for alternative cell therapies for intractable liver diseases, such as acute liver failure, cirrhosis and hepatocellular carcinoma (HCC). Under normal circumstances the liver undergoes a low rate of hepatocyte 'wear and tear' renewal, but can mount a brisk regenerative response to the acute loss of two-thirds or more of the parenchymal mass. A body of evidence favours placement of a stem cell niche in the periportal regions, although the identity of such stem cells in rodents and man is far from clear. In animal models of liver disease, adopting strategies to provide a selective advantage for transplanted hepatocytes has proved highly effective in repopulating recipient livers, but the poor success of today's hepatocyte transplants can be attributed to the lack of a clinically applicable procedure to force a similar repopulation of the human liver. The activation of bipotential hepatic progenitor cells (HPCs) is clearly vital for survival in many cases of acute liver failure, and the signals that promote such reactions are being elucidated. Bone marrow cells (BMCs) make, at best, a trivial contribution to hepatocyte replacement after damage, but other BMCs contribute to the hepatic collagen-producing cell population, resulting in fibrotic disease; paradoxically, BMC transplantation may help alleviate established fibrotic disease. HCC may have its origins in either hepatocytes or HPCs, and HCCs, like other solid tumours appear to be sustained by a minority population of cancer stem cells.
Tumour-wide 'omics' approaches have long held sway as the approach to identifying useful therapeutic targets. This view is changing with the realization that many, if not all, cancers contain a minority population of self-renewing stem cells, the cancer stem cells, which are entirely responsible for sustaining the tumour as well as giving rise to proliferating but progressively differentiating cells that are responsible for much of the cellular heterogeneity that is so familiar to histopathologists. Moreover, although many tumours probably have their origins in normal stem cells, persuasive evidence from the haematopoietic system suggests that genetic alterations in more committed progenitor cells can reactivate the self-renewal machinery, resulting in a further source of cancer stem cells. Thus, the bulk of the tumour is not the problem, and so the identification of cancer stem cells and the factors that regulate their behaviour are likely to have an enormous bearing on the way that we treat neoplastic disease in the future.
Endometriosis is a common complex inflammatory condition characterised by the presence of endometrium-like tissue outside the uterus, mainly in the pelvic area. It is associated with chronic pelvic pain and infertility, and its pathogenesis remains poorly understood. The disease is typically classified according to the revised American Fertility Society (rAFS) 4-stage surgical assessment system, although stage does not correlate well with symptomatology or prognosis. Previously identified genetic variants mainly are associated with stage III/IV disease, highlighting the need for further phenotype-stratified analysis that requires larger datasets. We conducted a meta-analysis of 15 genome-wide association studies (GWAS) and a replication analysis, including 58,115 cases and 733,480 controls in total, and sub-phenotype analyses of stage I/II, stage III/IV and infertility-associated endometriosis cases. This revealed 27 genetic loci associated with endometriosis at the genome-wide p-value threshold (P<5×10−8), 13 of which are novel and an additional 8 novel genes identified from gene-based association analyses. Of the 27 loci, 21 (78%) had greater effect sizes in stage III/IV disease compared to stage I/II, 1 (4%) had greater effect size in stage I/II compared to stage III/IV and 17 (63%) had greater effect sizes when restricted to infertility-associated endometriosis cases compared to overall endometriosis. These results suggest that specific variants may confer risk for different sub-types of endometriosis through distinct pathways. Analyses of genetic variants underlying different pain symptoms reported in the UK Biobank showed that 7/9 had positive significant (p<1.28×103) positive genetic correlations with endometriosis, suggesting a genetic basis for sensitivity to pain in general. Additional conditions with significant positive genetic correlations with endometriosis included uterine fibroids, excessive and irregular menstrual bleeding, osteoarthritis, diabetes as well as menstrual cycle length and age at menarche. These results provide a basis for fine-mapping of the causal variants at these 27 loci, and for functional follow-up to understand their contribution to endometriosis and its potential subtypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.