The activation gate of ion channels controls the transmembrane flux of permeant ions. In voltage-gated K+ channels, the aperture formed by the S6 bundle crossing can widen to open or narrow to close the ion permeation pathway, whereas the selectivity filter gates ion flux in cyclic-nucleotide gated (CNG) and Slo1 channels. Here we explore the structural basis of the activation gate for Slo2.1, a weakly voltage-dependent K+ channel that is activated by intracellular Na+ and Cl−. Slo2.1 channels were heterologously expressed in Xenopus laevis oocytes and activated by elevated [NaCl]i or extracellular application of niflumic acid. In contrast to other voltage-gated channels, Slo2.1 was blocked by verapamil in an activation-independent manner, implying that the S6 bundle crossing does not gate the access of verapamil to its central cavity binding site. The structural basis of Slo2.1 activation was probed by Ala scanning mutagenesis of the S6 segment and by mutation of selected residues in the pore helix and S5 segment. Mutation to Ala of three S6 residues caused reduced trafficking of channels to the cell surface and partial (K256A, I263A, Q273A) or complete loss (E275A) of channel function. P271A Slo2.1 channels trafficked normally, but were nonfunctional. Further mutagenesis and intragenic rescue by second site mutations suggest that Pro271 and Glu275 maintain the inner pore in an open configuration by preventing formation of a tight S6 bundle crossing. Mutation of several residues in S6 and S5 predicted by homology modeling to contact residues in the pore helix induced a gain of channel function. Substitution of the pore helix residue Phe240 with polar residues induced constitutive channel activation. Together these findings suggest that (1) the selectivity filter and not the bundle crossing gates ion permeation and (2) dynamic coupling between the pore helix and the S5 and S6 segments mediates Slo2.1 channel activation.
The plasma form of platelet-activating factor (PAF) acetylhydrolase (PAF-AH), also known as lipoprotein-associated phospholipase A 2 (Lp-PLA 2 ) inactivates potent lipid messengers such as PAF and modified phospholipids generated in settings of oxidant stress. In humans, PAF-AH circulates in blood in fully active form and associates with high and low density lipoproteins (HDL and LDL). Several studies suggest that the location of PAF-AH affects both the catalytic efficiency and the function of the enzyme in vivo. The distribution of PAF-AH among lipoproteins varies widely among mammals. Here, we report that mouse and human PAF-AHs associate with human HDL particles of different density. We made use of this observation in the development of a binding assay to identify domains required for association of human PAF-AH with human HDL. Sequence comparisons among species combined with domain-swapping and site-directed mutagenesis studies led us to the identification of C-terminal residues necessary for the association of human PAF-AH with human HDL. Interestingly, the region identified is not conserved among PAF-AHs, suggesting that PAF-AH interacts with HDL particles in a manner that is unique to each species. These findings contribute to our understanding of the mechanisms responsible for association of human PAF-AH with HDL and may facilitate future studies aimed at precisely determining the function of PAF-AH in each lipoprotein particle.
Agonists bind to sites on all four subunits to activate human ether-a-go-go–related gene 1 (hERG1) K+ channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.