Both extinct and extant hominin populations display morphological features consistent with Bergmann's and Allen's Rules. However, the functional implications of the morphologies described by these ecological laws are poorly understood. We examined this through the lens of endurance running. Previous research concerning endurance running has focused on locomotor energetic economy. We considered a less-studied dimension of functionality, thermoregulation. The performance of male ultra-marathon runners (n = 88) competing in hot and cold environments was analysed with reference to expected thermoregulatory energy costs and the optimal morphologies predicted by Bergmann's and Allen's Rules. Ecogeographical patterning supporting both principles was observed in thermally challenging environments. Finishers of hot-condition events had significantly longer legs than finishers of cold-condition events. Furthermore, hot-condition finishers had significantly longer legs than those failing to complete hot-condition events. A degree of niche-picking was evident; athletes may have tailored their event entry choices in accordance with their previous race experiences. We propose that the interaction between prolonged physical exertion and hot or cold climates may induce powerful selective pressures driving morphological adaptation. The resulting phenotypes reduce thermoregulatory energetic expenditure, allowing diversion of energy to other functional outcomes such as faster running.
Objectives We sought to determine the relationships between muscle size, function, and polar second moments of area (J) at the midshaft femur, proximal tibia, and midshaft tibia. Materials and Methods We used peripheral quantitative computed tomography to quantify right femoral and tibial J and soft tissue cross‐sectional areas, and force plate mechanography to quantify peak power output and maximum force of the right limb, among athletic women and control subjects. Results Lower limb bone J exhibited strong relationships with estimated force but not power between both groups. Among controls, the strongest relationships between force and J were found at the midshaft femur. Among athletes, these relationships shifted to the tibia, regardless of body size, likely reflecting functional strain related to the major knee extensors and ankle plantarflexors. Together, muscle force and stature explained as much as 82 and 48% of the variance in lower limb bone J among controls and athletes, respectively. Discussion Results highlight the importance of considering relevant muscle function variables (e.g., force and lever arm lengths) when interpreting behavioral signatures from skeletal remains. Future work to improve the estimation of muscle force from skeletal remains, and incorporate it with lever arm length into analyses, is warranted. Results also suggest that, in doing so, functional relationships between a given section location and musculature should be considered.
Objectives: Though relationships between limb bone structure and mechanical loading have provided fantastic opportunities for understanding the lives of prehistoric adults, the lives of children remain poorly understood. Our aim was to determine whether or not adult tibial skeletal variables retain information about childhood/adolescent loading, through assessing relationships between cortical and trabecular bone variables and the timing of impact loading relative to menarche in premenopausal adult females. Methods: Peripheral quantitative computed tomography was used to quantify geometric and densitometric variables from the proximal tibial diaphysis (66% location) and distal epiphysis (4% location) among 81 nulliparous young adult female controls and athletes aged 19-33 years grouped according to intensity of impact loading both pre-and post-menarche: (1) Low:Low (Controls);(2) High:Low; (3) High:High; (4) Moderate:Moderate; (5) Low:Moderate.ANCOVA was used to compare properties among the groups adjusted for age, stature, and body mass. Results: Significant increases in diaphyseal total cross-sectional area and strength-strain index were documented among groups with any premenarcheal impact loading relative to groups with none, regardless of postmenarcheal loading history (p < .01). In contrast, significantly elevated distal trabecular volumetric bone mineral density was only documented among groups with recent post-menarcheal loading relative to groups with none, regardless of pre-menarcheal impact loading history (p < .01). Conclusions: The consideration of diaphyseal cortical bone geometric and epiphyseal trabecular bone densitometric variables together within the tibia can identify variation in pre-menarcheal and post-menarcheal impact loading histories among premenopausal adult females.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.