Many environmental factors constrain the production of major food crops in Sub-Saharan Africa and South Asia. At the same time, these food production systems themselves have a range of negative impacts on the environment. In this paper we review the published literature and assess the depth of recent research (since 2000) on crop x environment interactions for rice, maize, sorghum/millets, sweetpotato/yam and cassava in these two regions. We summarize current
The Pacific Northwest (PNW) hydropower resource, central to the region's electricity supply, is vulnerable to the impacts of climate change. The Northwest Power and Conservation Council (NWPCC), an interstate compact agency, has conducted long term planning for the PNW electricity supply for its 2005 Power Plan. In formulating its power portfolio recommendation, the NWPCC explored uncertainty in variables that affect the availability and cost of electricity over the next 20 years. The NWPCC conducted an initial assessment of potential impacts of climate change on the hydropower system, but these results are not incorporated in the risk model upon which the 2005 Plan recommendations are based. To assist in bringing climate information into the planning process, we present an assessment of uncertainty in future PNW hydropower generation potential based on a comprehensive set of climate models and greenhouse gas emissions pathways. We find that the prognosis for PNW hydropower supply under climate change is worse than anticipated by the NWPCC's assessment. Differences between the predictions of individual climate models are found to contribute more to overall uncertainty than do divergent emissions pathways. Uncertainty in predictions of precipitation change appears to be more important with respect to impact on PNW hydropower than uncertainty in predictions of temperature change. We also find that a simple regression model captures nearly all of the response of a sequence of complex numerical models to large scale changes in climate. This result offers the possibility of streamlining both top-down impact assessment and bottom-up adaptation planning for PNW water and energy resources.
Background: High-throughput genomic technologies offer new approaches for environmental health monitoring, including metagenomic surveillance of antibiotic resistance determinants (ARDs). Although natural environments serve as reservoirs for antibiotic resistance genes that can be transferred to pathogenic and human commensal bacteria, monitoring of these determinants has been infrequent and incomplete. Furthermore, surveillance efforts have not been integrated into public health decision making.Objectives: We used a metagenomic epidemiology–based approach to develop an ARD index that quantifies antibiotic resistance potential, and we analyzed this index for common modal patterns across environmental samples. We also explored how metagenomic data such as this index could be conceptually framed within an early risk management context.Methods: We analyzed 25 published data sets from shotgun pyrosequencing projects. The samples consisted of microbial community DNA collected from marine and freshwater environments across a gradient of human impact. We used principal component analysis to identify index patterns across samples.Results: We observed significant differences in the overall index and index subcategory levels when comparing ecosystems more proximal versus distal to human impact. The selection of different sequence similarity thresholds strongly influenced the index measurements. Unique index subcategory modes distinguished the different metagenomes.Conclusions: Broad-scale screening of ARD potential using this index revealed utility for framing environmental health monitoring and surveillance. This approach holds promise as a screening tool for establishing baseline ARD levels that can be used to inform and prioritize decision making regarding management of ARD sources and human exposure routes.Citation: Port JA, Cullen AC, Wallace JC, Smith MN, Faustman EM. 2014. Metagenomic frameworks for monitoring antibiotic resistance in aquatic environments. Environ Health Perspect 122:222–228; http://dx.doi.org/10.1289/ehp.1307009
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.