Necrotizing enterocolitis (NEC) is characterized by intestinal injury and impaired mucin synthesis. We recently showed that breast milk exosomes from rodents promote intestinal cell viability, epithelial proliferation, and stem cell activity, but whether they also affect mucus production is unknown. Therefore, the aim of this study was to investigate the effects of bovine milk-derived exosomes on goblet cell expression in experimental NEC and delineate potential underlying mechanisms of action. Exosomes were isolated from bovine milk by ultracentrifugation and confirmed by Nanoparticle Tracking Analysis and through the detection of exosome membrane markers. To study the effect on mucin production, human colonic LS174T cells were cultured and exposed to exosomes. Compared to control, exosomes promoted goblet cell expression, as demonstrated by increased mucin production and relative expression levels of goblet cell expression markers trefoil factor 3 (TFF3) and mucin 2 (MUC2). In addition, exosome treatment enhanced the expression of glucose-regulated protein 94 (GRP94), the most abundant intraluminal endoplasmic reticulum (ER) chaperone protein that aids in protein synthesis. Furthermore, experimental NEC was induced in mouse pups by hyperosmolar formula feeding, lipopolysaccharide administration and hypoxia exposure on postnatal days 5–9. Milk exosomes were given with each gavage feed. NEC was associated with ileal morphological injury and reduction in MUC2+ goblet cells and GRP94+ cells per villus. Exosome administration to NEC pups prevented these changes. This research highlights the potential novel application of milk-derived exosomes in preventing the development of NEC in high-risk infants when breast milk is not available.
Necrotizing enterocolitis (NEC) is a devastating neonatal disease characterized by acute intestinal injury. Intestinal stem cell (ISC) renewal is required for gut regeneration in response to acute injury. The Wnt/β-catenin pathway is essential for intestinal renewal and ISC maintenance. We found that ISC expression, Wnt activity and intestinal regeneration were all decreased in both mice with experimental NEC and in infants with acute active NEC. Moreover, intestinal organoids derived from NEC-injured intestine of both mice and humans failed to maintain proliferation and presented more differentiation. Administration of Wnt7b reversed these changes and promoted growth of intestinal organoids. Additionally, administration of exogenous Wnt7b rescued intestinal injury, restored ISC, and reestablished intestinal epithelial homeostasis in mice with NEC. Our findings demonstrate that during NEC, Wnt/β-catenin signaling is decreased, ISC activity is impaired, and intestinal regeneration is defective. Administration of Wnt resulted in the maintenance of intestinal epithelial homeostasis and avoidance of NEC intestinal injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.