In recent years, histopathology images have been increasingly used as a diagnostic tool in the medical field. The process of accurately diagnosing a biopsy sample requires significant expertise in the field, and as such can be time-consuming and is prone to uncertainty and error. With the advent of digital pathology, using image recognition systems to highlight problem areas or locate similar images can aid pathologists in making quick and accurate diagnoses. In this paper, we specifically consider the encoded local projections (ELP) algorithm, which has previously shown some success as a tool for classification and recognition of histopathology images. We build on the success of the ELP algorithm as a means for image classification and recognition by proposing a modified algorithm which captures the local frequency information of the image. The proposed algorithm estimates local frequencies by quantifying the changes in multiple projections in local windows of greyscale images. By doing so we remove the need to store the full projections, thus significantly reducing the histogram size, and decreasing computation time for image retrieval and classification tasks. Furthermore, we investigate the effectiveness of applying our method to histopathology images which have been digitally separated into their hematoxylin and eosin stain components. The proposed algorithm is tested on the publicly available invasive ductal carcinoma (IDC) data set. The histograms are used to train an SVM to classify the data. The experiments showed that the proposed method outperforms the original ELP algorithm in image retrieval tasks. On classification tasks, the results are found to be comparable to state-of-the-art deep learning methods and better than many handcrafted features from the literature.
Branching patterns are ubiquitous in nature; consequently, over the years many researchers have tried to characterize the complexity of their structures. Due to their hierarchical nature and resemblance to fractal trees, they are often thought to have fractal properties; however, their non-homogeneity (i.e., lack of strict self-similarity) is often ignored. In this paper we review and examine the use of the box-counting and sandbox methods to estimate the fractal dimensions of branching structures. We highlight the fact that these methods rely on an assumption of self-similarity that is not present in branching structures due to their non-homogeneous nature. Looking at the local slopes of the log–log plots used by these methods reveals the problems caused by the non-homogeneity. Finally, we examine the role of the canopies (endpoints or limit points) of branching structures in the estimation of their fractal dimensions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.