The largest animals are marine filter feeders, but the underlying mechanism of their large size remains unexplained. We measured feeding performance and prey quality to demonstrate how whale gigantism is driven by the interplay of prey abundance and harvesting mechanisms that increase prey capture rates and energy intake. The foraging efficiency of toothed whales that feed on single prey is constrained by the abundance of large prey, whereas filter-feeding baleen whales seasonally exploit vast swarms of small prey at high efficiencies. Given temporally and spatially aggregated prey, filter feeding provides an evolutionary pathway to extremes in body size that are not available to lineages that must feed on one prey at a time. Maximum size in filter feeders is likely constrained by prey availability across space and time.
Humpback whales (Megaptera novaeangliae) are one of several baleen whale species in the Northwest Atlantic that coexist with vessel traffic and anthropogenic noise. Passive acoustic monitoring strategies can be used in conservation management, but the first step toward understanding the acoustic behavior of a species is a good description of its acoustic repertoire. Digital acoustic tags (DTAGs) were placed on humpback whales in the Stellwagen Bank National Marine Sanctuary to record and describe the non-song sounds being produced in conjunction with foraging activities. Peak frequencies of sounds were generally less than 1 kHz, but ranged as high as 6 kHz, and sounds were generally less than 1 s in duration. Cluster analysis distilled the dataset into eight groups of sounds with similar acoustic properties. The two most stereotyped and distinctive types ("wops" and "grunts") were also identified aurally as candidates for use in passive acoustic monitoring. This identification of two of the most common sound types will be useful for moving forward conservation efforts on this Northwest Atlantic feeding ground.
The extreme body size of blue whales requires a high energy intake and therefore demands efficient foraging strategies. As an obligate lunge feeder on aggregations of small zooplankton, blue whales engulf a large volume of prey-laden water in a single, rapid gulp. The efficiency of this feeding mechanism is strongly dependent on the amount of prey that can be captured during each lunge, yet food resources tend to be patchily distributed in both space and time. Here, we measured the threedimensional kinematics and foraging behaviour of blue whales feeding on krill, using suction-cup attached multi-sensor tags. Our analyses revealed 3608 rolling lunge-feeding manoeuvres that reorient the body and position the lower jaws so that a krill patch can be engulfed with the whale's body inverted. We also recorded these rolling behaviours when whales were in a searching mode in between lunges, suggesting that this behaviour also enables the whale to visually process the prey field and maximize foraging efficiency by surveying for the densest prey aggregations. These results reveal the complex manoeuvrability that is required for large rorqual whales to exploit prey patches and highlight the need to fully understand the three-dimensional interactions between predator and prey in the natural environment.
Summary1. Despite their importance in determining the rate of both energy gain and expenditure, how the fine-scale kinematics of foraging are modified in response to changes in prey abundance and distribution remain poorly understood in many animal ecosystems. 2. In the marine environment, bulk-filter feeders rely on dense aggregations of prey for energetically efficient foraging. Rorqual whales (Balaenopteridae) exhibit a unique form of filter feeding called lunge feeding, a process whereby discrete volumes of prey-laden water are intermittently engulfed and filtered. In many large rorqual species the size of engulfed water mass is commensurate with the whale's body size, yet is engulfed in just a few seconds. This filter-feeding mode thus requires precise coordination of the body and enlarged engulfment apparatus to maximize capture efficiency. 3. Previous studies from whale-borne tags revealed that many rorqual species perform rolling behaviours when foraging. It has been hypothesized that such acrobatic manoeuvres may be required for efficient prey capture when prey manifest in small discrete patches, but to date there has been no comprehensive analysis of prey patch characteristics during lunge feeding events. We developed a null hypothesis that blue whale kinematics are independent of prey patch characteristics. 4. To test this hypothesis, we investigated the foraging performance of blue whales, the largest filter-feeding predator and their functional response to variability in their sole prey source, krill using a generalized additive mixed model framework. We used a combination of animal-borne movement sensors and hydroacoustic prey mapping to simultaneously quantify the threedimensional foraging kinematics of blue whales (Balaenoptera musculus) and the characteristics of targeted krill patches. 5. Our analyses rejected our null hypothesis, showing that blue whales performed more acrobatic manoeuvres, including 180°and 360°rolling lunges, when foraging on low-density krill patches. In contrast, whales targeting high-density krill patches involved less manoeuvring during lunges and higher lunge feeding rates.6. These data demonstrate that blue whales exhibit a range of adaptive foraging strategies that maximize prey capture in different ecological contexts. Because first principles indicate that manoeuvres require more energy compared with straight trajectories, our data reveal a previously unrecognized level of complexity in predator-prey interactions that are not accounted for in optimal foraging and energetic efficiency models.
Animal-Borne Metrics Enable Acoustic Detection of Blue Whale MigrationHighlights d Acoustic monitoring reveals patterns in population-level blue whale song production d Tag-derived metrics provide behavioral context for distinct diel patterns in song d When integrated, tag and acoustic metrics reveal an acoustic signature of migration d Key to discerning timing, plasticity, and drivers of a dispersed migration
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.