Visuomotor adaptations in amblyopes are relatively minor and limited to aspects of movement planning. Their deficits in movement execution should benefit, however, from treatments that restore spatial acuity and binocularity to progressively normal levels and so deserve more explicit consideration when assessing therapeutic outcomes.
The importance of binocular vision for eye-hand coordination normally increases with age and use of online movement guidance. Restoring binocularity in children with amblyopia may improve their poor hand action control.
High-grade binocular stereo vision is essential for skilled precision grasping. Reduced disparity sensitivity results in inaccurate grasp-point selection and greater reliance on nonvisual (somesthetic) information from object contact to control grip stability.
Human patients rendered cortically blind by lesions to V1 can nevertheless discriminate between visual stimuli presented to their blind fields. Experimental evidence suggests that two response modes are involved. Patients are either unaware or aware of the visual stimuli, which they are able to discriminate. However, under both conditions patients insist that they do not see. We investigate the fundamental difference between percepts derived for the normal and affected hemifield in a human hemianope with visual stimuli of which he was aware. The psychophysical experiments we employed required the patient, GY, to make comparisons between stimuli presented in his affected and normal hemifields. The subject discriminated between, and was allowed to match, the stimuli. Our study reveals that the stimulus parameters of colour and motion can be discriminated and matched between the normal and blind hemifields, whereas brightness cannot. We provide evidence for associations between the percepts of colour and motion, but a dissociation between the percepts of brightness, derived from the normal and hemianopic fields. Our results are consistent with the proposal that the perception of different stimulus attributes is expressed in activity of functionally segregated visual areas of the brain. We also believe our results explain the patient's insistence that he does not see stimuli, but can discriminate between them with awareness.
Binocular vision provides important advantages for controlling reach-to-grasp movements. We examined the possible source(s) of these advantages by comparing prehension proficiency under four different binocular viewing conditions, created by randomly placing a neutral lens (control), an eight dioptre prism (Base In or Base Out) or a low-power (2.00-3.75 dioptre) Plus lens over the eye opposite the moving limb. The Base In versus Base Out prisms were intended to selectively alter vergence-specified distance (VSD) information, such that the targets appeared beyond or closer than their actual physical position, respectively. The Plus lens was individually tailored to reduce each subject's disparity sensitivity (to 400-800 arc s), while minimizing effects on distance estimation. In pre-testing, subjects pointed (without visual feedback) to mid-line targets at different distances, and produced the systematic directional errors expected of uncorrected movements programmed under each of the perturbed conditions. For the prehension tasks, subjects reached and precision grasped (with visual feedback available) cylindrical objects (two sizes and three locations), either following a 3 s preview in which to plan their actions or immediately after the object became visible. Viewing condition markedly affected performance, but the planning time allowed did not. Participants made the most errors suggesting premature collision with the object (shortest 'braking' times after peak deceleration; fastest velocity and widest grip at initial contact) under Base In prism viewing, consistent with over-reaching movements programmed to transport the hand beyond the actual target due to its 'further' VSD. Conversely, they produced the longest terminal reaches and grip closure times, with multiple corrections just before and after object contact, under the Plus lens (reduced disparity) condition. Base Out prism performance was intermediate between these two, with significant increases in additional forward movements during the transport end-phase, indicative of initial under-reaching in response to the target's 'nearer' VSD. Our findings suggest dissociations between the role of vergence and binocular disparity in natural prehension movements, with vergence contributing mainly to reach planning and high-grade disparity cues providing particular advantages for grasp-point selection during grip programming and application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.