We have synthesized the reduction products of fluoroethylene carbonate (FEC) and vinylene carbonate (VC) via lithium naphthalenide reduction. By analyzing the resulting solid precipitates and gas evolution, our results confirm that both FEC and VC decomposition products include HCO 2 Li, Li 2 C 2 O 4 , Li 2 CO 3 , and polymerized VC. For FEC, our experimental data supports a reduction mechanism where FEC reduces to form VC and LiF, followed by subsequent VC reduction. In the FEC reduction product, HCO 2 Li, Li 2 C 2 O 4 , and Li 2 CO 3 were found in smaller quantities than in the VC reduction product, with no additional fluorine environments being detected by solid-state nuclear magnetic resonance or X-ray photoelectron spectroscopy analysis. With these additives being practically used in higher (FEC) and lower (VC) concentrations in the base electrolytes of lithium-ion batteries, our results suggest that the di↵erent relative ratios of the inorganic and organic reduction products formed by their decomposition may be relevant to the chemical composition and morphology of the solid electrolyte interphase formed in their presence.
The solid electrolyte interphase (SEI) passivating layer that grows on all battery electrodes during cycling is critical to the long-term capacity retention of lithium-ion batteries. Yet, it is inherently difficult to study because of its nanoscale thickness, amorphous composite structure, and air sensitivity. Here, we employ an experimental strategy using 1H, 7Li, 19F, and 13C solid-state nuclear magnetic resonance (ssNMR) to gain insight into the decomposition products in the SEI formed on silicon electrodes, the uncontrolled growth of the SEI representing a major failure mechanism that prevents the practical use of silicon in lithium-ion batteries. The voltage dependent formation of the SEI is confirmed, with the SEI growth correlating with irreversible capacity. By studying both conductive carbon and mixed Si/C composite electrodes separately, a correlation with increased capacity loss of the composite system and the low-voltage silicon plateau is demonstrated. Using selective 13C labeling, we detect decomposition products of the electrolyte solvents ethylene carbonate (EC) and dimethyl carbonate (DMC) independently. EC decomposition products are present in higher concentrations and are dominated by oligomer species. Lithium semicarbonates, lithium fluoride, and lithium carbonate products are also seen. Ab initio calculations have been carried out to aid in the assignment of NMR shifts. ssNMR applied to both rinsed and unrinsed electrodes show that the organics are easily rinsed away, suggesting that they are located on the outer layer of the SEI.
The solid electrolyte interphase (SEI) of the high capacity anode material Si is monitored over multiple electrochemical cycles by (7)Li, (19)F, and (13)C solid-state nuclear magnetic resonance spectroscopies, with the organics dominating the SEI. Homonuclear correlation experiments are used to identify the organic fragments -OCH2CH2O-, -OCH2CH2-, -OCH2CH3, and -CH2CH3 contained in both oligomeric species and lithium semicarbonates ROCO2Li, RCO2Li. The SEI growth is correlated with increasing electrode tortuosity by using focused ion beam and scanning electron microscopy. A two-stage model for lithiation capacity loss is developed: initially, the lithiation capacity steadily decreases, Li(+) is irreversibly consumed at a steady rate, and pronounced SEI growth is seen. Later, below 50% of the initial lithiation capacity, less Si is (de)lithiated resulting in less volume expansion and contraction; the rate of Li(+) being irreversibly consumed declines, and the Si SEI thickness stabilizes. The decreasing lithiation capacity is primarily attributed to kinetics, the increased electrode tortuousity severely limiting Li(+) ion diffusion through the bulk of the electrode. The resulting changes in the lithiation processes seen in the electrochemical capacity curves are ascribed to non-uniform lithiation, the reaction commencing near the separator/on the surface of the particles.
(2017) Surface-sensitive NMR detection of the solid electrolyte interphase layer on reduced graphene oxide. Journal of Physical Chemistry Letters, 8 (5). pp. 1078 -1085 . ISSN 1948 Access from the University of Nottingham repository: http://eprints.nottingham.ac.uk/42184/1/Leskes%20et%20al.%20-%202017%20-%20Surface %20Sensitive%20NMR%20Detection%20of%20the%20SEI%20Layer%20on%20Reduced %20Graphene%20Oxide.pdf Copyright and reuse:The Nottingham ePrints service makes this work by researchers of the University of Nottingham available open access under the following conditions. This article is made available under the University of Nottingham End User licence and may be reused according to the conditions of the licence. For more details see: http://eprints.nottingham.ac.uk/end_user_agreement.pdf A note on versions:The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the repository url above for details on accessing the published version and note that access may require a subscription.For more information, please contact eprints@nottingham.ac.uk Just Accepted "Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts. 1Surface Sensitive NMR Detection of the SEI Layer on Reduced Graphene OxideMichal Leskes (1) *, Gunwoo Kim (2,3) , Tao Liu (2) , Alison L. Michan, (2) Fabien Aussenac (4) , Patrick Dorffer (4) , Subhradip Paul (5) , Clare P. Grey Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UKCambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UKBruker BioSpin, 34 rue de l'Industrie BP 10002, 67166 Wissembourg Cedex, France 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.