Engineered transcription factors designed to selectively activate or repress endogenous genes have great potential in medical and biotechnological applications. Ultimately, their success will depend on the development of efficient delivery systems. We show here that a chimeric tetracycline- controlled transcription factor, encompassing the Tet repressor (TetR) from the tetracycline-resistance operon (tet from Escherichia coli transposon Tn10) and a cell membrane transducing peptide, is able to regulate transcription from a tetracycline responsive promoter (pCMV2xtetO2). When added directly to cultured cells, TetR fused to the full-length Antennapedia homeodomain (AntpHD) from Drosophila (TetRAntp), was able to selectively repress transcription in cells transiently transfected with a tetracycline-regulated reporter transcription unit. Moreover, TetRAntp could repress expression of a tetracycline responsive reporter transcription unit stably integrated into the genome of HeLa cells, demonstrating the possibility of manipulating endogenous gene expression by cell-permeable transcription factors.
Increasing experimental evidence indicates that short polybasic peptides are able to translocate across the membrane of living cells. However, these peptides, often derived from viruses and insects, may induce unspecific effects that could mask the action of their cargoes. Here, we show that a panel of lysine and/or arginine-rich peptides, derived from human proteins involved in cell signalling pathways leading to inflammation, possess the intrinsic ability to cross intact cellular membranes. These peptides are also capable of carrying a biologically active cargo. One of these peptides, encompassing the cell permeable sequence of the Toll-receptor 4 (TLR4) adaptor protein (TIRAP) and modified to carry a dominant-negative domain of the same TIRAP protein, selectively inhibited the production of pro-inflammatory cytokines upon LPS challenge, in in vitro, ex vivo and in vivo experiments. Docking studies indicated that this inhibition might be mediated by the disruption of the recruitment of downstream effector molecules. These results show for the first time the potential of using for therapy cell permeable peptides derived from human proteins involved in disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.