Poly(glycerol sebacate) (PGS), a promising scaffold material for soft tissue engineering applications, is a soft, tough elastomer with excellent biocompatibility. However, the rapid in vivo degradation rate of PGS limits its use as a scaffold material. To determine the impact of crosslink density on degradation rate, a family of PGS materials was synthesized by incrementally increasing the curing time from 42 to 144 h, at 120 degrees C and 10 mTorr vacuum. As expected, PGS became a stiffer, tougher, and stronger elastomer with increasing curing time. PGS disks were subcutaneously implanted into rats and periodically harvested; only mild tissue responses were observed and the biocompatibility remained excellent. Regardless of crosslink density, surface erosion degradation was observed. The sample dimensions linearly decreased with implantation time, and the mass loss rates were constant after 1-week implantation. As surface erosion degradation frequently correlates with enzymatic digestion, parallel in vitro digestion studies were conducted in lipase solutions which hydrolyze ester bonds. Enzymatic digestion played a significant role in degrading PGS, and the mass loss rates were not a function of curing time. Alternative chemistry approaches will be required to decrease the enzymatic hydrolysis rate of the ester bonds in PGS polymers.
Clinical protocols utilize bone marrow to seed synthetic and decellularized allogeneic bone grafts for enhancement of scaffold remodeling and fusion. Marrow-derived cytokines induce host neovascularization at the graft surface, but hypoxic conditions cause cell death at the core. Addition of cellular components that generate an extensive primitive plexus-like vascular network that would perfuse the entire scaffold upon anastomosis could potentially yield significantly higher-quality grafts. We used a mouse model to develop a two-stage protocol for generating vascularized bone grafts using mesenchymal stem cells (hMSCs) from human bone marrow and umbilical cord-derived endothelial cells. The endothelial cells formed tube-like structures and subsequently networks throughout the bone scaffold 4–7 days after implantation. hMSCs were essential for stable vasculature both in vitro and in vivo; however, contrary to expectations, vasculature derived from hMSCs briefly cultured in medium designed to maintain a proliferative, nondifferentiated state was more extensive and stable than that with hMSCs with a TGF-β-induced smooth muscle cell phenotype. Anastomosis occurred by day 11, with most hMSCs associating closely with the network. Although initially immature and highly permeable, at 4 weeks the network was mature. Initiation of scaffold mineralization had also occurred by this period. Some human-derived vessels were still present at 5 months, but the majority of the graft vasculature had been functionally remodeled with host cells. In conclusion, clinically relevant progenitor sources for pericytes and endothelial cells can serve to generate highly functional microvascular networks for tissue engineered bone grafts.
We have been using a genetic strategy to define the contribution of specific candidate genes, such as those encoding subunits of the gamma-aminobutyric acid type A receptor, to various ethanol sensitive responses. We have used the gene knockout approach in mouse embryonic stem cells to create mice in which the gene encoding the alpha6 subunit of the gamma-aminobutyric acid type A receptor is rendered nonfunctional. In the present report, we provide a detailed characterization of several behavioral responses to ethanol in these null allele mice. In a separate series of experiments, behavioral response to ethanol was compared between two inbred strains of mice that are commonly used as background stock in knockout experiments, namely C57BL/6J and Strain 129/SvJ. Wild type (alpha6+/+) and homozygous null allele (alpha6-/-) mice did not differ to the ataxic effects of ethanol on acute functional tolerance (95.8 +/- 8.7 vs. 98.8 +/- 5.7 mg/dl +/- SEM, respectively). Withdrawal hyperexcitability was assessed following chronic exposure to ethanol vapor (EtOH) or air (CONT) in inhalation chambers in a multiple withdrawal treatment paradigm. At the end of the last treatment cycle, mice were scored for handling induced convulsions (HIC). After adjusting for differences in blood ethanol concentration between genotypes at the end of the final treatment cycle, we observed a greater area under the 24-hr HIC curves in mice treated with ethanol (p < 0.0001) but did not detect an effect of genotype (alpha6+/+/CONT 3.1 +/- 2.0; alpha6-/-/CONT 5.5 +/- 2.5; alpha6+/+/EtOH 30.1 +/- 6.2; alpha6-/-/EtOH 33.0 +/- 5.8 mean units +/- SEM). We also examined these mice for differences in protracted tolerance; at approximately 26 hr into the final withdrawal cycle, each mouse was injected with ethanol (3.5 mg/g body weight) and sleep time was measured. We detected a significant effect of treatment (p < 0.001) with ethanol-treated mice demonstrating signs of tolerance as reflected by a reduction in duration of sleep time. However, effect of genotype was not significant (alpha6+/+/CONT 57.4 +/- 7.6; alpha6-/-/CONT 59.0 +/- 7.6; alpha6+/ +/EtOH 34.8 +/- 7.4; alpha6-/-/EtOH 30.8 +/- 5.6 min +/- SEM). From these data we conclude that the alpha6 subunit of the GABA(A)-R exerts little if any influence on acute functional tolerance, withdrawal hyperexcitability, or protracted tolerance. Strain 129/SvJ and C57BL/6J mice were also compared for acute functional tolerance and were found not to differ (96.3 +/- 4.4 vs. 94.8 +/- 11.3 mg/dl +/- SEM, respectively). Withdrawal hyperexcitability was assessed by comparing the area under the 24 hr HIC curves. Strain 129/SvJ mice displayed a much greater basal HIC response compared to C57BL/6J mice (19.8 +/- 4.3 vs. 0.2 +/- 0.2 mean units +/- SEM, respectively); after adjusting for differences in blood ethanol concentration between strains at the end of the final ethanol treatment cycle, the HIC response was markedly enhanced by ethanol treatment in Strain 129/SvJ mice but not in C57BL/6J mice (50.4 +/- 3.1 vs. ...
The tympanic membrane (TM), separating the external and middle ear, consists of fibrous connective tissue sandwiched between epithelial layers. To treat chronic ear infections, tympanostomy drainage tubes are placed in surgically created holes in TMs which can become chronic perforations upon extrusion. Perforations are repaired using a variety of techniques, but are limited by morbidity, unsatisfactory closure rates, or minimal regeneration of the connective tissue. A more effective, minimally-invasive therapy is necessary to enhance the perforation closure rate. Current research utilizing decellularized or alignate materials moderately enhance closure but the native TM architecture is not restored. Poly(glycerol sebacate) (PGS) is a biocompatible elastomer which supports cell migration and enzymatically degrades in contact with vascularized tissue. PGS spool-shaped plugs were manufactured using a novel process. Using minimally invasive procedures, these elastomeric plugs were inserted into chronic chinchilla TM perforations. As previously reported, effective perforation closure occurred as both flange surfaces were covered by confluent cell layers; >90% of perforations were closed at 6-week postimplantation. This unique in vivo environment has little vascularized tissue. Consequently, PGS degradation was minimal over 16-week implantation, hindering regeneration of the TM fibrous connective tissue. PGS degradation must be enhanced to promote complete TM regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.