Abstract. Gravity waves are an important driver for the atmospheric circulation and have substantial impact on weather and climate. Satellite instruments offer excellent opportunities to study gravity waves on a global scale. This study focuses on observations from the Atmospheric Infrared Sounder (AIRS) onboard the National Aeronautics and Space Administration Aqua satellite and the Infrared Atmospheric Sounding Interferometer (IASI) onboard the European MetOp satellites. The main aim of this study is an intercomparison of stratospheric gravity wave observations of both instruments. In particular, we analyzed AIRS and IASI 4.3 µm brightness temperature measurements, which directly relate to stratospheric temperature. Three case studies showed that AIRS and IASI provide a clear and consistent picture of the temporal development of individual gravity wave events. Statistical comparisons based on a 5-year period of measurements (2008)(2009)(2010)(2011)(2012) showed similar spatial and temporal patterns of gravity wave activity. However, the statistical comparisons also revealed systematic differences of variances between AIRS and IASI that we attribute to the different spatial measurement characteristics of both instruments. We also found differences between day-and nighttime data that are partly due to the local time variations of the gravity wave sources. While AIRS has been used successfully in many previous gravity wave studies, IASI data are applied here for the first time for that purpose. Our study shows that gravity wave observations from different hyperspectral infrared sounders such as AIRS and IASI can be directly related to each other, if instrument-specific characteristics such as different noise levels and spatial resolution and sampling are carefully considered. The ability to combine observations from different satellites provides an opportunity to create a long-term record, which is an exciting prospect for future climatological studies of stratospheric gravity wave activity.
[1] Orographic gravity waves generated by flow over the topography of small islands in the southern oceans have been observed from orbit with the Atmospheric Infrared Sounder on the Aqua satellite. We examine the occurrence frequencies of these waves in the stratosphere at 40 km above 14 islands and examine geographical and seasonal changes. Our results show that these small island mountain waves occur commonly in the stratosphere in the May-September season, though not every day. Differing seasonal variations are evident at different islands, and the seasonal variations are closely related to latitude and prevailing wind patterns. We also examine interannual variability in 2 years of data and the relationships between occurrence frequencies, momentum fluxes, and stratospheric and surface winds. The results suggest that stratospheric winds have a first-order limiting effect on the observations of these island mountain waves in Atmospheric Infrared Sounder (AIRS) data. Surface wind direction and island orographic relief have an additional but secondary influence on the island mountain wave occurrence frequencies in AIRS data. The implications are that these wave events are extremely common and that on many days when the waves are not observed in AIRS data they have likely dissipated and induced a drag force on the atmosphere below the 40 km observation level. Observations of momentum flux during these wave events also permit a first estimate of their importance to the general circulation of the Southern Hemisphere.
Abstract. Stratospheric gravity waves from small-scale orographic sources are currently not well-represented in general circulation models. This may be a reason why many simulations have difficulty reproducing the dynamical behavior of the Southern Hemisphere polar vortex in a realistic manner. Here we discuss a 12-year record (2003)(2004)(2005)(2006)(2007)(2008)(2009)(2010)(2011)(2012)(2013)(2014) of stratospheric gravity wave activity at Southern Hemisphere orographic hotspots as observed by the Atmospheric InfraRed Sounder (AIRS) aboard the National Aeronautics and Space Administration's (NASA) Aqua satellite. We introduce a simple and effective approach, referred to as the "two-box method", to detect gravity wave activity from infrared nadir sounder measurements and to discriminate between gravity waves from orographic and other sources. From austral midfall to mid-spring (April-October) the contributions of orographic sources to the observed gravity wave occurrence frequencies were found to be largest for the Andes (90 %), followed by the Antarctic Peninsula (76 %), Kerguelen Islands (73 %), Tasmania (70 %), New Zealand (67 %), Heard Island (60 %), and other hotspots (24-54 %). Mountain wave activity was found to be closely correlated with peak terrain altitudes, and with zonal winds in the lower troposphere and mid-stratosphere. We propose a simple model to predict the occurrence of mountain wave events in the AIRS observations using zonal wind thresholds at 3 and 750 hPa. The model has significant predictive skill for hotspots where gravity wave activity is primarily due to orographic sources. It typically reproduces seasonal variations of the mountain wave occurrence frequencies at the Antarctic Peninsula and Kerguelen Islands from near zero to over 60 % with mean absolute errors of 4-5 percentage points. The prediction model can be used to disentangle upper level wind effects on observed occurrence frequencies from low-level source and other influences. The data and methods presented here can help to identify interesting case studies in the vast amount of AIRS data, which could then be further explored to study the specific characteristics of stratospheric gravity waves from orographic sources and to support model validation.
Atmospheric gravity waves have a major effect on atmospheric circulation, structure, and stability on a global scale. Gravity waves can be generated by convection, but in many cases it is difficult to link convection directly to a specific wave event. In this research, the authors examine an event on 12 January 2003 when convective waves were clearly generated by a period of extremely intense rainfall in the region of Darwin, Australia, during the early morning. The waves were observed by the Atmospheric Infrared Sounder (AIRS) instrument on board the Aqua satellite, and a dry version of a nonlinear, three-dimensional mesoscale cloudresolving model is used to generate a comparable wave field. The model is forced by a spatially and temporally varying heating field obtained from a scanning radar located north of Darwin at Gunn Point. With typical cloud-resolving model studies it is generally not possible to compare the model results feature-for-feature with observations since although the model precipitation and small-scale heating may be similar to observations, they will occur at different locations and times. In this case the comparison is possible since the model is forced by the observed heating pattern. It is shown that the model output wave pattern corresponds well to the wave pattern observed by the AIRS instrument at the time of the AIRS overpass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.