Key points• The activation of glial G q protein-coupled receptor (G q -GPCR) signalling cascades broadly activates the autonomic nervous system • The activation of glial G q -GPCR signalling cascades affects activity-related behaviour.
Abstract: Glial fibrillary acidic protein (GFAP)-expressing cells (GFAP+ glial cells) are the predominant cell type in the central and peripheral nervous systems. Our understanding of the role of GFAP + glial cells and their signalling systems in vivo is limited due to our inability to manipulate these cells and their receptors in a cell type-specific and non-invasive manner. To circumvent this limitation, we developed a transgenic mouse line (GFAP-hM3Dq mice) that expresses an engineered G q protein-coupled receptor (G q -GPCR) known as hM3Dq DREADD (designer receptor exclusively activated by designer drug) selectively in GFAP + glial cells. The hM3Dq receptor is activated solely by a pharmacologically inert, but bioavailable, ligand (clozapine-N -oxide; CNO), while being non-responsive to endogenous GPCR ligands. In GFAP-hM3Dq mice, CNO administration increased heart rate, blood pressure and saliva formation, as well as decreased body temperature, parameters that are controlled by the autonomic nervous system (ANS). Additionally, changes in activity-related behaviour and motor coordination were observed following CNO administration. Genetically blocking inositol 1,4,5-trisphosphate (IP 3 )-dependent Ca 2+ increases in astrocytes failed to interfere with CNO-mediated changes in ANS function, locomotor activity or motor coordination. Our findings reveal an unexpectedly broad role of GFAP + glial cells in modulating complex physiology and behaviour in vivo and suggest that these effects are not dependent on IP 3 -dependent increases in astrocytic Ca 2+ .
Astrocytes are the predominant glial type in the central nervous system and play important roles in assisting neuronal function and network activity. Astrocytes exhibit complex signaling systems that are essential for their normal function and the homeostasis of the neural network. Altered signaling in astrocytes is closely associated with neurological and psychiatric diseases, suggesting tremendous therapeutic potential of these cells. To further understand astrocyte function in health and disease, it is important to study astrocytic signaling in vivo. In this review, we discuss molecular tools that enable the selective manipulation of astrocytic signaling, including the tools to selectively activate and inactivate astrocyte signaling in vivo. Lastly, we highlight a few tools in development that present strong potential for advancing our understanding of the role of astrocytes in physiology, behavior, and pathology.
Very little is known about the ability of astrocytic receptors to exhibit plasticity as a result of changes in neuronal activity. Here we provide evidence for bidirectional scaling of astrocytic group I metabotropic glutamate receptor signaling in acute mouse hippocampal slices following long-term changes in neuronal firing rates. Plasticity of astrocytic mGluRs was measured by recording spontaneous and evoked Ca2+ elevations in both astrocytic somata and processes. An exogenous astrocytic Gq G protein-coupled receptor was resistant to scaling, suggesting that the alterations in astrocyte Ca2+ signaling result from changes in activity of the surface mGluRs rather than a change in intracellular G protein signaling molecules. These findings suggest that astrocytes actively detect shifts in neuronal firing rates and adjust their receptor signaling accordingly. This type of long-term plasticity in astrocytes resembles neuronal homeostatic plasticity and might be important to ensure an optimal or expected level of input from neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.