The prices of walnuts vary according to their geographical origin and, therefore, offer a financial incentive for adulteration. A reliable analysis method is required to quickly detect possible misdeclarations and thus prevent food fraud. In this study, a method to distinguish between seven geographical origins of walnuts using Fourier transform near-infrared (FT-NIR) spectroscopy combined with chemometrics as a fast, versatile, and easy to handle analytical tool was developed. NIR spectra of 212 ground and afterwards freeze-dried walnut samples, harvested in three consecutive years (2017–2019), were collected. We optimized the data pre-processing by applying and evaluating 50,545 different pre-processing combinations, followed by linear discriminant analysis (LDA) which was confirmed by nested cross-validation. The results show that in the scope of our research minimal pre-processing led to the best results: By applying just multiplicative scatter correction (MSC) and median centering, a classification accuracy of 77.00% ± 1.60% was achieved. Consequently, this complex model can be used to answer economically relevant questions e.g., to distinguish between European and Chinese walnuts. Furthermore, the great influence of the applied pre-processing methods, e.g., the selected wavenumber range, on the achieved classification accuracy is shown which underlines the importance of optimization of the pre-processing strategy.
Aptamers feature a number of advantages, compared to antibodies. However, their application has been limited so far, mainly because of the complex selection process. ‘High-throughput sequencing fluorescent ligand interaction profiling’ (HiTS–FLIP) significantly increases the selection efficiency and is consequently a very powerful and versatile technology for the selection of high-performance aptamers. It is the first experiment to allow the direct and quantitative measurement of the affinity and specificity of millions of aptamers simultaneously by harnessing the potential of optical next-generation sequencing platforms to perform fluorescence-based binding assays on the clusters displayed on the flow cells and determining their sequence and position in regular high-throughput sequencing. Many variants of the experiment have been developed that allow automation and in situ conversion of DNA clusters into base-modified DNA, RNA, peptides, and even proteins. In addition, the information from mutational assays, performed with HiTS–FLIP, provides deep insights into the relationship between the sequence, structure, and function of aptamers. This enables a detailed understanding of the sequence-specific rules that determine affinity, and thus, supports the evolution of aptamers. Current variants of the HiTS–FLIP experiment and its application in the field of aptamer selection, characterisation, and optimisation are presented in this review.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.