Since the discovery of its insecticidal properties and its subsequent widespread use, DDT [2,2-bis(chlorophenyl)-1,1,1-trichloroethane] has accumulated in the environment, having a wide range of adverse effects on nontarget species. Due to their hydrophobicity, DDT and other persistent organic pollutants are difficult to remove from contaminated soils, and increasingly so through time as weathering occurs. Phytoremediation is an emerging plant-based technology that may be used to cost-effectively remove or neutralize contaminants in the environment. For some phytoremediation strategies, it must first be possible to translocate hydrophobic chemicals across the root and through the shoot via an aqueous transpiration stream. The objective of this study was to compare the ability of five plant varieties (zucchini, tall fescue, alfalfa, rye grass, and pumpkin) to mobilize and translocate DDT. Plants were grown in the greenhouse in soil contaminated with DDT and its metabolites, DDD and DDE (sigmaDDT refers to all of DDT, DDD, and DDE) at two concentrations (high approximately 3700 ng/g, and low approximately 150 ng/g). All trays were covered with laboratory Parafilm to limit volatilization. Cucurbita pepo species (pumpkin and zucchini) achieved the highest translocation and bioaccumulation factors, and also extracted the highest absolute amounts of sigmaDDT from both the high and low sigmaDDT soils. In the high sigmaDDT soil treatment, pumpkin accumulated 1519 ng of sigmaDDT in the roots and 57,536 ng of sigmaDDT in the shoots, and zucchini accumulated 2043 ng of sigmaDDT in the roots and 35,277 ng of sigmaDDT in the shoots. With the exception of alfalfa and pumpkin, principal component analysis detected no preferential translocation or transformation of sigmaDDT compounds within the plant. The success of the Cucurbita pepo species in this study to extract and translocate such hydrophobic molecules may be related to their high transpiration volume, large above-ground biomass, and composition of root exudates. This suggests potential for their application in phytoremediation.
Greenhouse studies were conducted to assess the impact of organic matter additions on plant uptake of DDT [2,2-bis(chlorophenyl)-1,1,1-trichloroethane] from weathered soil. Cucurbita pepo ssp. pepo cv. Howden pumpkins were grown in 100 g of DDT contaminated soil ([DDT] - 1100 ng/g) mixed with equal volumes of either clean soil, perlite, vermiculite, peat, potting soil, or granular activated carbon (GAC) to give total organic carbon contents of 2.4%, 2.5%, 2.6%, 11.5%, 12.2%, and 27.3%, respectively. As in other studies, root DDT concentrations were significantly lower in soils with high organic matter. Root bioaccumulation factors (BAF = [DDT]root/[DDT]soil) approximated this trend. Root concentrations correlated with organic matter concentrations and not with soil DDT concentrations. Conversely, shoot DDT concentrations, shoot BAFs and translocation factors (TLF = BAF(shoot)/BAF(root)) were not significantly different between treatment groups, except for plants grown in GAC/DDT soil. This suggests that amendments with a range of organic matter contents may be added to improve soil conditions at industrial sites without significant adverse effects on phytoextraction potential of C. pepo ssp. pepo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.