We demonstrate a simple route to
versatile electrically addressable
conductive polymer graft copolymer systems. The monomer of poly(3,4-ethylenedioxythiophene),
one of the commercially most important conductive polymers, was modified
by the addition of an ATRP-initiating site to grow brushes from. The
modified monomer is easily accessible by a one-step synthesis from
the commercially available 2,3-dihydrothieno[3,4-b][1,4]dioxin-2-yl)methanol. The modified monomer is subsequently
electropolymerized onto large area gold-coated electrodes and utilized
as a backbone for grafting pH-responsive poly(acrylic acid) brushes
from.
This work demonstrates polymer brushes grafted from conductive polymer films which display dynamic surface switching dependent on salt, temperature and electrode potential. The electroactivity presented by the conductive polymer and the responsiveness of the grafted brushes leads to an interface with multiple control parameters. Here, we demonstrate this concept by grafting of uncharged brushes of poly(ethylene glycol)methyl ether methacrylates from conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT), and observe a temperature-and salt-induced switch of brush conformation, and their effect on the electrochemistry of the material. The switching conditions can be tailored by copolymerizing monomers with different numbers of ethylene glycol units. In addition, these surfaces exhibit antifouling properties, leading to potential applications such as electrically-addressable biointerfaces. Conductive surfaces with dynamic switching in response to temperature and salt † This work demonstrates polymer brushes grafted from conductive polymer films which display dynamic surface switching dependent on salt, temperature and electrode potential. The electroactivity presented by the conductive polymer and the responsiveness of the grafted brushes leads to an interface with multiple control parameters. Here, we demonstrate this concept by grafting of uncharged brushes of poly(ethylene glycol)methyl ether methacrylates from conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT), and observe a temperature-and salt-induced switch of brush conformation, and their effect on the electrochemistry of the material. The switching conditions can be tailored by copolymerizing monomers with different numbers of ethylene glycol units. In addition, these surfaces exhibit antifouling properties, leading to potential applications such as electrically-addressable biointerfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.