Cancer metastasis requires that primary tumour cells evolve the capacity to intravasate into the lymphatic system or vasculature, and extravasate into and colonize secondary sites1. Others have demonstrated that individual cells within complex populations show heterogeneity in their capacity to form secondary lesions2–5. Here we develop a polyclonal mouse model of breast tumour heterogeneity, and show that distinct clones within a mixed population display specialization, for example, dominating the primary tumour, contributing to metastatic populations, or showing tropism for entering the lymphatic or vasculature systems. We correlate these stable properties to distinct gene expression profiles. Those clones that efficiently enter the vasculature express two secreted proteins, Serpine2 and Slpi, which were necessary and sufficient to program these cells for vascular mimicry. Our data indicate that these proteins not only drive the formation of extra-vascular networks but also ensure their perfusion by acting as anticoagulants. We propose that vascular mimicry drives the ability of some breast tumour cells to contribute to distant metastases while simultaneously satisfying a critical need of the primary tumour to be fed by the vasculature. Enforced expression of SERPINE2 and SLPI in human breast cancer cell lines also programmed them for vascular mimicry, and SERPINE2 and SLPI were overexpressed preferentially in human patients that had lung-metastatic relapse. Thus, these two secreted proteins, and the phenotype they promote, may be broadly relevant as drivers of metastatic progression in human cancer.
The partitioning of genetic material between the nucleus and cytoplasmic (mitochondrial and plastid) genomes within eukaryotic cells necessitates coordinated integration between these genomic compartments, with important evolutionary and biomedical implications. Classic questions persist about the pervasive reduction of cytoplasmic genomes via a combination of gene loss, transfer and functional replacement - and yet why they are almost always retained in some minimal form. One striking consequence of cytonuclear integration is the existence of 'chimeric' enzyme complexes composed of subunits encoded in two different genomes. Advances in structural biology and comparative genomics are yielding important insights into the evolution of such complexes, including correlated sequence changes and recruitment of novel subunits. Thus, chimeric cytonuclear complexes provide a powerful window into the mechanisms of molecular co-evolution.
Mitochondria, a nearly ubiquitous feature of eukaryotes, are derived from an ancient symbiosis. Despite billions of years of cooperative coevolution -in what is arguably the most important mutualism in the history of life -the persistence of mitochondrial genomes also creates conditions for genetic conflict with the nucleus. Because mitochondrial genomes are present in numerous copies per cell, they are subject to both within-and among-organism levels of selection. Accordingly, 'selfish' genotypes that increase their own proliferation can rise to high frequencies even if they decrease organismal fitness. It has been argued that uniparental (often maternal) inheritance of cytoplasmic genomes evolved to curtail such selfish replication by minimizing within-individual variation and, hence, within-individual selection. However, uniparental inheritance creates conditions for cytonuclear conflict over sex determination and sex ratio, as well as conditions for sexual antagonism when mitochondrial variants increase transmission by enhancing maternal fitness but have the side-effect of being harmful to males (i.e., 'mother's curse'). Here, we review recent advances in understanding selfish replication and sexual antagonism in the evolution of mitochondrial genomes and the mechanisms that suppress selfish interactions, drawing parallels and contrasts with other organelles (plastids) and bacterial endosymbionts that arose more recently. Although cytonuclear conflict is widespread across eukaryotes, it can be cryptic due to nuclear suppression, highly variable, and lineage-specific, reflecting the diverse biology of eukaryotes and the varying architectures of their cytoplasmic genomes.
Partitiviruses are segmented, multipartite dsRNA viruses that until recently were only known to infect fungi, plants, and protozoans. Metagenomic surveys have revealed that partitivirus-like sequences are also commonly associated with arthropods. One arthropod-associated partitivirus, galbut virus, is common in wild populations of Drosophila melanogaster. To begin to understand the processes that underlie this virus's high global prevalence, we established colonies of wild-caught infected flies. Infection remained at stably high levels over three years, with between 63-100% of individual flies infected. Galbut virus infects fly cells and replicates in tissues throughout infected adults, including reproductive tissues and the gut epithelium. We detected no evidence of horizontal transmission via ingestion but vertical transmission from either infected females or infected males was ∼100% efficient. Vertical transmission of a related partitivirus, verdadero virus, that we discovered in a laboratory colony of Aedes aegypti mosquitoes was similarly efficient. This suggests that efficient biparental vertical transmission may be a feature of at least a subset of insect-infecting partitiviruses. To study the impact of galbut virus infection free from the confounding effect of other viruses, we generated an inbred line of flies with galbut virus as the only detectable virus infection. We were able to transmit infection experimentally via microinjection of homogenate from these galbut-only flies. This sets the stage for experiments to understand the biological impact and possible utility of partitiviruses infecting model organisms and disease vectors. IMPORTANCE Galbut virus is a recently discovered partitivirus that is extraordinarily common in wild populations of the model organism Drosophila melanogaster. Like most viruses discovered through metagenomics, most of the basic biological questions about this virus remain unanswered. We found that galbut virus, along with a closely related partitivirus found in Aedes aegypti mosquitoes, is transmitted from infected females or males to offspring with ∼100% efficiency and can be maintained in laboratory colonies over years. This efficient transmission mechanism likely underlies the successful spread of these viruses through insect populations. We created Drosophila lines that contained galbut virus as the only virus infection and showed that these flies can be used as a source for experimental infections. This provides insight into how arthropod-infecting partitiviruses may be maintained in nature and sets the stage for exploration of their biology and potential utility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.