- The analytical validation of OncoPanel demonstrates the ability of targeted next-generation sequencing to detect multiple types of genetic alterations across a panel of genes implicated in cancer biology.
BackgroundX chromosome inactivation (XCI) is a developmental program of heterochromatin formation that initiates during early female mammalian embryonic development and is maintained through a lifetime of cell divisions in somatic cells. Despite identification of the crucial long non-coding RNA Xist and involvement of specific chromatin modifiers in the establishment and maintenance of the heterochromatin of the inactive X chromosome (Xi), interference with known pathways only partially reactivates the Xi once silencing has been established. Here, we studied ATF7IP (MCAF1), a protein previously characterized to coordinate DNA methylation and histone H3K9 methylation through interactions with the methyl-DNA binding protein MBD1 and the histone H3K9 methyltransferase SETDB1, as a candidate maintenance factor of the Xi.ResultsWe found that siRNA-mediated knockdown of Atf7ip in mouse embryonic fibroblasts (MEFs) induces the activation of silenced reporter genes on the Xi in a low number of cells. Additional inhibition of two pathways known to contribute to Xi maintenance, DNA methylation and Xist RNA coating of the X chromosome, strongly increased the number of cells expressing Xi-linked genes upon Atf7ip knockdown. Despite its functional importance in Xi maintenance, ATF7IP does not accumulate on the Xi in MEFs or differentiating mouse embryonic stem cells. However, we found that depletion of two known repressive biochemical interactors of ATF7IP, MBD1 and SETDB1, but not of other unrelated H3K9 methyltransferases, also induces the activation of an Xi-linked reporter in MEFs.ConclusionsTogether, these data indicate that Atf7ip acts in a synergistic fashion with DNA methylation and Xist RNA to maintain the silent state of the Xi in somatic cells, and that Mbd1 and Setdb1, similar to Atf7ip, play a functional role in Xi silencing. We therefore propose that ATF7IP links DNA methylation on the Xi to SETDB1-mediated H3K9 trimethylation via its interaction with MBD1, and that this function is a crucial feature of the stable silencing of the Xi in female mammalian cells.
Summary X chromosome inactivation (XCI) is a dynamically-regulated developmental process with inactivation and reactivation accompanying the loss and gain of pluripotency, respectively. A functional relationship between pluripotency and lack of XCI has been suggested, whereby pluripotency transcription factors repress the master regulator of XCI, the noncoding transcript Xist, by binding to its first intron (intron1). To test this model, we have generated intron1-mutant embryonic stem cells (ESCs) and two independent mouse models. We found that Xist’s repression in ESCs, its transcriptional upregulation upon differentiation, and its silencing upon reprogramming to pluripotency are not dependent on intron1. Although we observed subtle effects of intron1-deletion on the randomness of XCI and in the absence of the antisense transcript Tsix in differentiating ESCs, these have little relevance in vivo as mutant mice do not deviate from Mendelian ratios of allele transmission. Together, our findings demonstrate that intron1 is dispensable for the developmental dynamism of Xist expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.