The introduction of materials modelling into computer-aided engineering (CAE) processing simulation has become popular in recent years, whereas the fundamental challenge lies in the development of material models that can calculate the properties essential for processing design and simulation. This paper reviews the recent development of such models and the material data that can be calculated include physical, thermophysical, and mechanical properties, as well as phase transformation kinetics. The calculated material data has been used as input to numerous CAE packages for the simulation of casting, welding, forming and heat treatments. Two case studies are presented here, one on the simulation of residual stress in linear friction welding of titanium alloys, and the other on the prediction of distortion and residual stress in heat-treated large steel rings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.