Introduction The work described here involved the use of a modified fundus camera to obtain sequential hyperspectral images of the retina in 14 normal volunteers and in 1 illustrative patient with a retinal vascular occlusion. Methods The paper describes analysis techniques, which allow oximetry within retinal vessels; these results are presented as retinal oximetry maps. Results Using spectral images, with wavelengths between 556 and 650 nm, the mean oxygen saturation (OS) value in temporal retinal arterioles in normal volunteers was 104.3 ( ± 16.7), and in normal temporal retinal venules was 34.8 (±17.8). These values are comparable to those quoted in the literature, although, the venular saturations are slightly lower than those values found by other authors; explanations are offered for these differences. Discussion The described imaging and analysis techniques produce a clinically useful map of retinal oximetric values. The results from normal volunteers and from one illustrative patient are presented. Further developments, including the recent development of a 'snapshot' spectral camera, promises enhanced non-invasive retinal vessel oximetry mapping.
A snapshot multi-spectral imaging technique is described which employs multiple cascaded birefringent interferometers to simultaneously spectrally filter and demultiplex multiple spectral images onto a single detector array. Spectral images are recorded directly without the need for inversion and without rejection of light and so the technique offers the potential for high signal-to-noise ratio. An example of an eight-band multi-spectral movie sequence is presented; we believe this is the first such demonstration of a technique able to record multi-spectral movie sequences without the need for computer reconstruction.
There was reasonable agreement between the measured oxygen saturation values and those calculated by the oximetry model. The oximetry model could be used to determine the functional health of the retina.
Purpose To determine whether there are differences in retinal vascular oxygen saturation measurements, estimated using a hyperspectral fundus camera, between normal eyes and treated eyes of subjects with asymmetrical primary open-angle glaucoma (POAG). Methods A noninvasive hyperspectral fundus camera was used to acquire spectral images of the retina at wavelengths between 556 and 650 nm in 2-nm increments. In total, 14 normal eyes and both eyes of 11 treated POAG subjects were imaged and analyzed using algorithms that use the spectral variation of the optical densities of blood vessels to estimate the oxygen saturation of blood within the retinal vasculature. In the treated POAG group, each of the eyes were categorized, based on the mean deviation of the Humphrey visual-field analyzer result, as either more-advanced or less-advanced, glaucomatous eyes. Unpaired t-tests (twotailed) with Welch's correction were used to compare the mean oxygen saturation between the normal subjects and the treated POAG subgroups. Results In less-advanced and moreadvanced-treated POAG eyes, mean retinal venular oxygen saturations (48.2 ± 21.6% and 42.6 ± 18.8%, respectively) were significantly higher than in normal eyes (27.9 ± 9.9%; P ¼ 0.03 and 0.01, respectively). Arteriolar oxygen saturation was not significantly different between normal eyes and treated POAG eyes.
ConclusionsThe increased oxygen saturation of the retinal venules in advancedtreated POAG eyes may indicate reduced metabolic consumption of oxygen in the inner retinal tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.