Summary
Soils represent a major sink for organic xenobiotic contaminants in the environment. The degree to which organic chemicals are retained within the soil is controlled by soil properties, such as organic matter, and the physico‐chemical properties of the contaminant. Chemicals which display hydrophobic and lipophilic characteristics, as well as a recalcitrant chemical structure, will be retained within the soil, and depending on the ‘strength’ of the association may persist for long periods of time. This review describes the behaviour of hydrophobic organic contaminants in soils, focusing on the mechanisms controlling interactions between soil and contaminants. The bioavailability of contaminants in soil is also discussed, particularly in relation to contact time with the soil. It considers the degradation of organic contaminants in soil and the mechanisms microbes use to access contaminants. Finally, the review discusses the ‘pros’ and ‘cons’ of chemical and biological techniques available for assessing bioavailability of hydrophobic organic chemicals in soils, highlighting the need to quantify bioavailability by chemical techniques. It concludes by highlighting the need for understanding the interactions between the soil, contaminants and biota which is crucial to understanding the bioavailability of contaminants in soils.
This paper describes the validation and application of a simple flask-based (14)C-respirometer system designed to assess mineralisation of (14)C-labelled substrates under defined conditions. Validation of this respirometer system indicated stoichiometric CO(2) trapping up to a maximum of 400 micromol of CO(2) (in a single trap). Polycyclic aromatic hydrocarbon (PAH)-degrading bacteria were used to measure growth-linked biodegradation of [(14)C]naphthalene to (14)CO(2). A (14)C activity balance of 101.7+/-8.9% (n=6), after 74 h incubation time and 10 respirometer-opening events, indicated the suitability of the system for monitoring substrate mineralisation. This respirometric apparatus was then successfully applied to assess: (i) the PAH catabolism of microbes in a field contaminated soil, where naphthalene and phenanthrene were rapidly mineralised and (ii) soil-associated organic contaminant bioavailability, where increased soil-phenanthrene contact time resulted in a reduction in phenanthrene mineralisation in the soil. The described respirometer system differs from existing respirometer systems in that the CO(2) trap can be removed and replaced quickly and easily. The system is efficient, reproducible, adaptable to many situations, easy to construct and simple to use, it therefore affords advantages over existing systems.
Subsurface high voltage electric cables are commonly insulated using dodecylbenzene in combination with mineral oil. This work assessed the impact of increasing concentrations of cable insulating oil (0-10% dry weight) on soil microbial respiration as determined by mineralisation of [1-(14)C]glucose (11 microg C g(-1) soil). Acute impact was assessed from 0 days to 21 days, and chronic impact was assessed after 300 days. This study found that cable insulating oil increased respiratory activity of soil microflora. The extent of impact was found to depend on both oil concentration and the length of oil-soil contact time. Following acute exposure (21-days oil-soil contact time), it was found that oil concentrations up to 1% promoted a significant (P<0.05) increase in the extent of [1-(14)C]glucose mineralisation to (14)CO(2) relative to the control. In contrast, higher concentrations of cable insulating oil (5% and 10%) promoted no significant (P0.05) increase in the extent of [1-(14)C]glucose mineralisation to (14)CO(2) relative to the control. Following chronic exposure (300-days oil-soil contact time), the extent of mineralisation was greater at all oil concentrations applied relative to the control. For oil concentrations up to and including 1%, there was a decrease in the extent of elevation in mineralisation relative to the values after 21-days exposure. At higher oil concentrations, namely 5% and 10%, the extent of elevation in mineralisation was comparable with that after 21-days oil-soil contact time. We suggest that the increase in mineralisation of glucose indicates that cable insulating oil is a readily available carbon source to the carbon-limited soil microflora.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.