Abrupt sunlight reduction scenarios (ASRS) following catastrophic events, such as a nuclear war, a large volcanic eruption or an asteroid strike, could prompt global agricultural collapse. There are low-cost foods that could be made available in an ASRS: resilient foods. Nutritionally adequate combinations of these resilient foods are investigated for different stages of a scenario with an effective response, based on existing technology. While macro- and micronutrient requirements were overall met, some—potentially chronic—deficiencies were identified (e.g., vitamins D, E and K). Resilient sources of micronutrients for mitigating these and other potential deficiencies are presented. The results of this analysis suggest that no life-threatening micronutrient deficiencies or excesses would necessarily be present given preparation to deploy resilient foods and an effective response. Careful preparedness and planning—such as stock management and resilient food production ramp-up—is indispensable for an effective response that not only allows for fulfilling people’s energy requirements, but also prevents severe malnutrition.
Agrobacterium tumefaciens is a plant pathogen commonly repurposed for genetic modification of crops. Despite its versatility, it remains inefficient at transferring DNA to many hosts, including to animal cells. Like many pathogens, physical contact between A. tumefaciens and host cells promotes infection efficacy. Thus, improving the strength and specificity of A. tumefaciens to target cells has the potential for enhancing DNA transfer for biotechnological and therapeutic purposes. Here, we demonstrate a methodology for engineering genetically encoded exogeneous adhesins at the surface of A. tumefaciens. We identified an autotransporter gene we named Aat that is predicted to show canonical β-barrel and passenger domains. We engineered the β-barrel scaffold and linker (Aatβ) to display synthetic adhesins susceptible to rewire A. tumefaciens to alternative host targets. As a proof of concept, we leveraged the versatility of a VHH domain to rewire A. tumefaciens adhesion to yeast and mammalian hosts displaying a GFP target receptor. Finally, to demonstrate how synthetic A. tumefaciens adhesion can improve transfer to host cells, we showed improved protein translocation into HeLa cells using a sensitive split luciferase reporter system. Engineering A. tumefaciens adhesion has therefore a strong potential in generating complex heterogeneous cellular assemblies and in improving DNA transfer efficiency against non-natural hosts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.