Hetero-oligomers of G-protein-coupled receptors have become the subject of intense investigation because their purported potential to manifest signaling and pharmacological properties that differ from the component receptors makes them highly attractive for the development of more selective pharmacological treatments. In particular, dopamine D1 and D2 receptors have been proposed to form hetero-oligomers that couple to Gαq proteins, and SKF83959 has been proposed to act as a biased agonist that selectively engages these receptor complexes to activate Gαq and thus phospholipase C. D1/D2 heteromers have been proposed as relevant to the pathophysiology and treatment of depression and schizophrenia. We used in vitro bioluminescence resonance energy transfer (BRET), ex vivo analyses of receptor localization and proximity in brain slices, and behavioral assays in mice to characterize signaling from these putative dimers/oligomers. We were unable to detect Gαq or Gα11 protein coupling to homomers or heteromers of D1 or D2 receptors using a variety of biosensors. SKF83959-induced locomotor and grooming behaviors were eliminated in D1 receptor knockout mice, verifying a key role for D1-like receptor activation. In contrast, SKF83959-induced motor responses were intact in D2 receptor and Gαq knockout mice, as well as in knock-in mice expressing a mutant Ala286-CaMKIIα, that cannot autophosphorylate to become active. Moreover, we found that in the shell of the nucleus accumbens, even in neurons in which D1 and D2 receptor promoters are both active, the receptor proteins are segregated and do not form complexes. These data are not compatible with SKF83959 signaling through Gαq or through a D1–D2 heteromer and challenge the existence of such a signaling complex in the adult animals that we used for our studies.
Many neurotransmitters, hormones, and sensory stimuli elicit their cellular responses through the targeted activation of receptors coupled to the Gαq family of heterotrimeric G proteins. Nevertheless, we still understand little about the consequences of loss of this signaling activity on brain function. We therefore examined the effects of genetic inactivation of Gnaq, the gene that encode for Gαq, on responsiveness in a battery of behavioral tests in order to assess the contribution of Gαq signaling capacity in the brain circuits mediating expression of affective behaviors (anxiety and behavioral despair), spatial working memory, and locomotor output (coordination, strength, spontaneous activity, and drug-induced responses). First, we replicated and extended findings showing clear motor deficits in Gαq knockout mice as assessed on an accelerating rotarod and the inverted screen test. We then assessed the contribution of the basal ganglia motor loops to these impairments, using open field testing and analysis of drug-induced locomotor responses to the psychostimulant cocaine, the benzazepine D1 receptor agonists SKF83822 and SKF83959, and the NMDA receptor antagonist MK-801. We observed significant increases in drug-induced locomotor activity in Gαq knockout mice from the dopaminergic agonists but not MK-801, indicating that basal ganglia locomotor circuitry is largely intact in the absence of Gαq. Additionally, we observed normal phenotypes in both the elevated zero maze and the forced swim test indicating that anxiety and depression-related circuitry appears to be largely intact after loss of Gnaq expression. Lastly, use of the Y-maze revealed spatial memory deficits in Gαq knockout mice, indicating that receptors signaling through Gαq are necessary in these circuits for proficiency in this task.
Defects in the development of the brain have a profound impact on mature brain functions and underlying psychopathology. Classical neurotransmitters and neuromodulators, such as dopamine, serotonin, norepinephrine, acetylcholine, glutamate and GABA, have pleiotropic effects during brain development. In other words, these molecules produce multiple diverse effects to serve as regulators of distinct cellular functions at different times in neurodevelopment. These systems are impacted upon by abuse of a variety of illicit drugs, neurotherapeutics and environmental contaminants. In this review, we describe the impact of drugs and chemicals on brain formation and function in animal models and in human populations, highlighting sensitive periods and effects that may not emerge until later in life.
Refractory epilepsy and encephalopathy are frequently encountered in patients with inborn errors of metabolism. We report a case of an 8‐year‐old girl with history of developmental delay, autism and intractable epilepsy that was found to have a pathogenic variant in CAD. We briefly review the biochemical pathway of CAD and the preclinical and clinical studies that suggest uridine supplementation can rescue the CAD deficiency phenotypes. Our case demonstrates a relatively late‐onset case of refractory epilepsy with a rapid response to treatment using the uridine pro‐drug triacetyluridine (TAU), the FDA‐approved treatment for hereditary orotic aciduria.
We present a case of a young child with a rare metabolic disorder whose clinical presentation resembled that of autoimmune myasthenia gravis. The differential diagnosis was expanded when autoantibody testing was negative and the patient did not respond to standard immunomodulatory therapies. Rapid whole genome sequencing identified 2 rare variants of uncertain significance in the SLC52A3 gene shown to be in compound heterozygous state after parental testing. Biallelic mutations in SLC52A3 are associated with Riboflavin Transporter Deficiency, which in its untreated form, results in progressive neurodegeneration and death. Supplementation with oral riboflavin has been shown to limit disease progression and improve symptoms in some patients. When the diagnosis is suspected, patients should be started on supplementation immediately while awaiting results from genetic studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.