Abstract. A computational classification of contact symmetries and higher-order local symmetries that do not commute with t, x, as well as local conserved densities that are not invariant under t, x is carried out for a generalized version of the Krichever-Novikov equation. Several new results are obtained. First, the Krichever-Novikov equation is explicitly shown to have a local conserved density that contains t, x. Second, apart from the dilational point symmetries known for special cases of the Krichever-Novikov equation and its generalized version, no other local symmetries with low differential order are found to contain t, x. Third, the basic Hamiltonian structure of the Krichever-Novikov equation is used to map the local conserved density containing t, x into a nonlocal symmetry that contains t, x. Fourth, a recursion operator is applied to this nonlocal symmetry to produce a hierarchy of nonlocal symmetries that have explicit dependence on t, x. When the inverse of the Hamiltonian map is applied to this hierarchy, only trivial conserved densities are obtained.
We suggest an algorithm for integrating systems of two second-order ordinary differential equations with four symmetries. In particular, if the admitted transformation group has two second-order differential invariants, the corresponding system can be integrated by quadratures using invariant representation and the operator of invariant differentiation. Otherwise, the systems reduce to partially uncoupled forms and can also be integrated by quadratures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.