The rapid increase in data traffic caused by the proliferation of smart devices has spurred the demand for extremely large-capacity wireless networks. Thus, faster data transmission rates and greater spectral efficiency have become critical requirements in modern-day networks. The ubiquitous 5G is an end-to-end network capable of accommodating billions of linked devices and offering high-performance broadcast services due to its several enabling technologies. However, the existing review works on 5G wireless systems examined only a subset of these enabling technologies by providing a limited coverage of the system model, performance analysis, technology advancements, and critical design issues, thus requiring further research directions. In order to fill this gap and fully grasp the potential of 5G, this study comprehensively examines various aspects of 5G technology. Specifically, a systematic and all-encompassing evaluation of the candidate 5G enabling technologies was conducted. The evolution of 5G, the progression of wireless mobile networks, potential use cases, channel models, applications, frequency standardization, key research issues, and prospects are discussed extensively. Key findings from the elaborate review reveal that these enabling technologies are critical to developing robust, flexible, dependable, and scalable 5G and future wireless communication systems. Overall, this review is useful as a resource for wireless communication researchers and specialists.
Radio waves are attenuated by atmospheric phenomena such as snow, rain, dust, clouds, and ice, which absorb radio signals. Signal attenuation becomes more severe at extremely high frequencies, usually above 10 GHz. In typical equatorial and tropical locations, rain attenuation is more prevalent. Some established research works have attempted to provide state-of-the-art reviews on modeling and analysis of rain attenuation in the context of extremely high frequencies. However, the existing review works conducted over three decades (1990 to 2022), have not adequately provided comprehensive taxonomies for each method of rain attenuation modeling to expose the trends and possible future research directions. Also, taxonomies of the methods of model validation and regional developmental efforts on rain attenuation modeling have not been explicitly highlighted in the literature. To address these gaps, this paper conducted an extensive literature survey on rain attenuation modeling, methods of analyses, and model validation techniques, leveraging the ITU-R regional categorizations. Specifically, taxonomies in different rain attenuation modeling and analysis areas are extensively discussed. Key findings from the detailed survey have shown that many open research questions, challenges, and applications could open up new research frontiers, leading to novel findings in rain attenuation. Finally, this study is expected to be reference material for the design and analysis of rain attenuation.
Abstract-In this research work, an improved active contour method called Bat-Active Contour Method (BA-ACM) using bat algorithm has been developed. The bat algorith m is incorporated in order to escape local min ima entrapped into by the classical active contour method, stabilize contour (snake) movement and accurately, reach boundary concavity. Then, the developed Bat-Active Contour Method was applied to a dataset of med ical images of the human heart, bone of knee and vertebra which were obtained from Auckland MRI Research Group (Card iac Atlas Website), University of Auckland. Set of similarity metrics, including Jaccard index and Dice similarity measures were adopted to evaluate the performance of the developed algorithm. Jaccard index values of 0.9310, 0.9234 and 0.8947 and Dice similarity values of 0.8341, 0.8616 and 0.9138 were obtained fro m the human heart, vertebra and bone of knee images respectively. The results obtained show high similarity measures between BA-A CM algorithm and expert segmented images. Moreso, traditional ACM produced Jaccard index values 0.5873, 0.5601, 0.6009 and Dice similarity values of 0.5974, 0.6079, 0.6102 in the hu man heart, vertebra and bone of knee images respectively. The results obtained for traditional ACM show low similarity measures between it and expertly segmented images. It is evident from the results obtained that the developed algorith m performed better co mpared to the traditional ACM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.