Aims: The focus of this study was to evaluate the potential use of the predatory bacteria Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus to control the pathogens associated with human infection. Methods and Results: By coculturing B. bacteriovorus 109J and M. aeruginosavorus ARL‐13 with selected pathogens, we have demonstrated that predatory bacteria are able to attack bacteria from the genus Acinetobacter, Aeromonas, Bordetella, Burkholderia, Citrobacter, Enterobacter, Escherichia, Klebsiella, Listonella, Morganella, Proteus, Pseudomonas, Salmonella, Serratia, Shigella, Vibrio and Yersinia. Predation was measured in single and multispecies microbial cultures as well as on monolayer and multilayer preformed biofilms. Additional experiments aimed at assessing the optimal predation characteristics of M. aeruginosavorus demonstrated that the predator is able to prey at temperatures of 25–37°C but is unable to prey under oxygen‐limiting conditions. In addition, an increase in M. aeruginosavorus ARL‐13 prey range was also observed. Conclusions: Bdellovibrio bacteriovorus and M. aeruginosavorus have an ability to prey and reduce many of the multidrug‐resistant pathogens associated with human infection. Significance and Impact of the Study: Infectious complications caused by micro‐organisms that have become resistant to drug therapy are an increasing problem in medicine, with more infections becoming difficult to treat using traditional antimicrobial agents. The work presented here highlights the potential use of predatory bacteria as a biological‐based agent for eradicating multidrug‐resistant bacteria, with the hope of paving the way for future studies in animal models.
Periodontal diseases are multifactorial infections elicited by a complex of primarily gram-negative bacteria that interact with host tissues and lead to the destruction of the periodontal structures. Bdellovibrio bacteriovorus is a gram-negative bacterium that preys upon other gram-negative bacteria. It was previously shown that B. bacteriovorus has an ability to attack and remove surface-attached bacteria or biofilms. In this study, we examined the host specificity of B. bacteriovorus strain 109J and its ability to prey on oral pathogens associated with periodontitis, including; Aggregatibacter actinomycetemcomitans, Eikenella corrodens, Fusobacterium nucleatum, Prevotella intermedia, Porphyromonas gingivalis and Tannerella forsythia. We further demonstrated that B. bacteriovorus 109J has an ability to remove biofilms of Ei. corrodens as well as biofilms composed of A. actinomycetemcomitans. Bdellovibrio bacteriovorus was able to remove A. actinomycetemcomitans biofilms developed on hydroxyapatite surfaces and in the presence of saliva, as well as to detach metabolically inactive biofilms. Experiments aimed at enhancing the biofilm removal aptitude of B. bacteriovorus with the aid of extracellular-polymeric-substance-degrading enzymes demonstrated that proteinase-K inhibits predation. However, treating A. actinomycetemcomitans biofilms with DspB, a poly-N-acetylglucosamine (PGA) -hydrolysing enzyme, increased biofilm removal. Increased biofilm removal was also recorded when A. actinomycetemcomitans PGA-defective mutants were used as host cells, suggesting that PGA degradation could enhance the removal of A. actinomycetemcomitans biofilm by B. bacteriovorus.
Staphylococcus aureus, a versatile human pathogen, is commonly associated with medical device infections. Its capacity to establish and maintain these infections is thought to be related to its ability to form adherent biofilms. In this study, commercially available α-amylase compounds from various biological sources were evaluated for their ability to reduce and prevent biofilm formation of several S. aureus isolates. Our data demonstrates that α-amylase compounds can rapidly detach biofilms of S. aureus, as well as inhibit biofilm formation. Our data also demonstrates that α-amylase compounds have an ability to reduce and disassociate S. aureus cell-aggregates grown in liquid suspension. These findings suggest that commercially available α-amylase compounds could be used in the future to control S. aureus biofilm-related infections.
Multi- and pan-antibiotic-resistant bacteria are a major health challenge in hospital settings. Furthermore, when susceptible bacteria establish surface-attached bio-film populations, they become recalcitrant to antimicrobial therapy. Therefore, there is a need for novel antimicrobials that are effective against multi-drug-resistant and surface-attached bacteria. A screen to identify prokaryote-derived antimicrobials from a panel of over 100 bacterial strains was performed. One compound isolated from Citrobacter freundii exhibited antimicrobial activity against a wide range of Gram-negative bacteria and was effective against biofilms. Random transposon mutagenesis was performed to find mutants unable to produce the antimicrobial compound. Transposons mapped to a bacteriocin gene located on a small plasmid capable of replication in Escherichia coli. The plasmid was sequenced and found to be highly similar to a previously described colicinogenic plasmid. Expression of the predicted bacteriocin immunity gene conferred bacteriocin immunity to E. coli. The predicted bacteriocin gene, colA-43864, expressed in E. coli was sufficient to generate anti-microbial activity, and purified recombinant ColA-43864 was highly effective in killing E. coli, Citrobacter species, and Klebsiella pneumoniae cells in a planktonic and biofilm state. This study suggests that bacteriocins can be an effective way to control surface-attached pathogenic bacteria.
Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus are highly motile Gram-negative predatory bacteria with the potential of being used as biocontrol agents or living antibiotics. It was suggested previously that sugar-binding proteins play a role in M. aeruginosavorus and B. bacteriovorus host specificity and predator-prey interactions. The effect of carbohydrates on predation was reexamined in this study. It was demonstrated that the presence of carbohydrates could indeed block predation. However, further investigation demonstrated that inhibition of predation was due to medium acidification by the metabolic activity of the host and not to a blocking of a putative sugar-binding protein. The data presented here might be of value when storing, growing, and cultivating predatory bacteria, as well as when considering environmental conditions that might influence predation in the field.Bdellovibrio and Micavibrio species are Gram-negative, motile, and uniflagellate bacteria characterized by predatory behavior or an obligatory parasitic life cycle. Recently, these bacteria have drawn new interest for their potential use as "live antibiotics" (9, 30). The Bdellovibrio life cycle, with Bdellovibrio bacteriovorus being the most studied representative of the genus, consists of an attack-phase cell that attaches to other Gram-negative bacteria, penetrates their periplasm, multiplies in the periplasmic space, and finally bursts the cell envelope to start the cycle anew (24,29,31). Unlike that of Bdellovibrio spp., our knowledge of Micavibrio biology is somewhat modest. Micavibrio belongs to the alpha subgroup of proteobacteria (11); they are small (0.5 to 1.5 m long), rod shaped, and curved and have a single polar flagellum. The Micavibrio life cycle includes the attachment, or leeching, of a motile attack-phase cell to its prey, followed by growth on the surface of the host and, finally, the death of the infected cells (2,18,19). Unlike B. bacteriovorus, which is considered to have a broad host range (9, 31), Micavibrio spp. such as M. aeruginosavorus are host specific (1,9,16,19). To date, one of the key questions puzzling researchers is what governs host specificity and host-predator recognition.One factor that might be involved in predator-prey interactions and host specificity is protein-carbohydrate interactions. Lectins are sugar-binding proteins that play a role in many biological recognition phenomena, one of which is recognition of host cells by microorganisms. For example, the adherence of bacteria to host cells is in many cases mediated by lectin-like adhesins on the bacterial surface that bind to carbohydrate receptors present on the host cell surface as part of the membrane glycoproteins and glycolipids (5,15,23). Lectins are also involved in recognition and attachment of fungi, protozoa, and viruses to their host cells during infection (3,13,20,25,32,34).In 1984, Chemeris and colleagues demonstrated that the predation of B. bacteriovorus could be inhibited by the addition of sugars to coculture media ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.