This study is focused on Direct Block Scheduling testing (Direct Multi-Period Scheduling methodology) which schedules mine production considering the correct discount factor of each mining block, resulting in the final pit. Each block is analyzed individually in order to define the best target period. This methodology presents an improvement of the classical methodology derived from Lerchs-Grossmann's initial proposition improved by Whittle. This paper presents the differences between these methodologies, specially focused on the algorithms' avidity. Avidity is classically defined by the voracious search algorithms, whereupon some of the most famous greedy algorithms are Branch and Bound, Brutal Force and Randomized. Strategies based on heuristics can accentuate the voracity of the optimizer system. The applied algorithm use simulated annealing combined with Tabu Search. The most avid algorithm can select the most profitable blocks in early periods, leading to higher present value in the first periods of mine operation. The application of discount factors to blocks on the Lerchs-Grossmann's final pit has an accentuated effect with time, and this effect may make blocks scheduled for the end of the mine life unfeasible, representing a trend to a decrease in reported reserves.
Mineral projects are composed of geological, operational and market uncertainties, and reducing these uncertainties is one of the objectives of engineering. Most surveys assess the impact of geological and operational uncertainties on the mining planning. The objective of this work is to study the impact of market uncertainty on the mineral activity. The influence of iron ore price simulation on mining sequencing will be evaluated. The price of iron ore has random behavior that is best represented by the Geometric Brownian Movement system. This study analyzed the historical series of iron ore in order to determine the percentage volatility and drift. Traditionally, a constant and deterministic price is used for the ore mined in all periods of a mineral project. The direct block scheduling methodology was adopted because it is able to apply the appropriate financial discount factor to the simulated probabilistic price. The proposed methodology was able to quantify the market uncertainty.
In mining projects, it is necessary to have a wide knowledge of the main variables of the mineral deposit before strategic mine planning takes effect. In the meantime, the application of geometallurgy has allowed the modeling of parameters related to the lithologies present in the deposit, such as the specific energy in comminution. This work intends to carry out a mine planning case study with the Direct Block Scheduling (DBS) methodology implemented in the MiningMath software and using the Marvin block model. The results indicate that the processing time of each block required more complex decision-making from the DBS algorithm to fulfill the objectives of mine planning. It is also noticed that the algorithms prioritize the extraction of blocks more released in the first years of the mine, anticipating profits and leaving, for the second half of the life of the project, the intensification of development, aiming to release more blocks for mining.
Os acidentes ampliados recorrentes trouxeram à tona questionamentos acerca das boas práticas na mineração. A dimensão dos danos e a ressonância das vozes das vítimas fomentaram dúvidas sobre a sustentabilidade dos processos mineiros. É possível fazer mineração responsável e produtiva? Quais seriam os papéis e as responsabilidades de protagonistas e coadjuvantes das lamentáveis cenas? Logo, um estudo que busca resgatar a noção dos desastres ampliados mineiros assume relevância para tentar responder estes questionamentos. No plano metodológico, será adotado um modelo de aplicação teórico-conceitual a respeito das técnicas de gerenciamento de risco e análise de acidentes anteriores. Em que os achados indicarão que é possível fazer mineração responsável, produtiva e que seus danos, quando houver, possam ser mitigados.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.