The evaluation of the ocean energy balance is crucial for improving the fundamental understanding of the mechanisms sustaining ocean circulation. Based on the outputs of the ROMS ocean model, the energy cycle, eddy–mean flow interactions, and energy pathways of the deep Gulf of Mexico (GoM) have been investigated in this study. The theoretical framework for the analysis is based on the energy equations for the time-mean and time-varying flow, where some of the terms were split into their horizontal and vertical components to monitor the energy pathways. Of the energy maintaining deep kinetic energy (KE), approximately 75% is transferred from the upper layer to the deep layer by vertical pressure work (PW), about 6% by the horizontal PW through the Yucatan and Florida straits, and ~19% is generated through the processes related to baroclinic instabilities. The mean circulation generates eddies in the upper layer, while eddies drive mean circulation in the deep layer. Energy is transferred downward in the eastern and western part of the Gulf, upward in the deep western-central part, and a strong westward energy transport can be observed below 2000-m depth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.